Steyvers F.J., De Waard D.: Road-edge delineation in rural areas: effects on driving behaviour. Ergonomics, 43, 2, 2000, 223-238, DOI: 10.1080/001401300184576
DOI: https://doi.org/10.1080/001401300184576
Google Scholar
Burghardt T.E., Mosböck H., Pashkevich A., Fiolić M.: Horizontal road markings for human and machine vision. Transportation Research Procedia, 48, 2000, 3622-3633, DOI: 10.1016/j.trpro.2020.08.089
DOI: https://doi.org/10.1016/j.trpro.2020.08.089
Google Scholar
Pocock B.W., Rhodes C.C.: Principles of glass-bead reflectorization. Highway Research Board Bulletin, 57, 1952, 32-48
Google Scholar
Babić D., Burghardt T.E., Babić D.: Applica¬tion and characteristics of waterborne road mark-ing paint. International Journal for Traffic and Transport Engineering, 5, 2, 2015, 150-169, DOI: 10.7708/ijtte.2015.5(2).06
DOI: https://doi.org/10.7708/ijtte.2015.5(2).06
Google Scholar
Schnell T., Zwahlen H.: Driver preview distances at night based on driver eye scanning recordings as a function of pavement marking retroreflectivities. Transportation Research Record: Journal of the Trans¬portation Research Board, 1692, 1, 1999, 129-141, DOI: 10.3141/1692-14
DOI: https://doi.org/10.3141/1692-14
Google Scholar
Burghardt T.E., Pashkevich A., Babić D., Mosböck H., Babić D., Żakowska L.: Microplastics and road markings: the role of glass beads and loss esti¬mation. Transportation Research Part D: Trans¬port and Environment, 102, 2022, 103123, DOI: 10.1016/j.trd.2021.103123
DOI: https://doi.org/10.1016/j.trd.2021.103123
Google Scholar
Eigenmann L.: Aggregate elements for improving anti-skid and visibility properties of traffic regulating markings on roadway pavements, United States Patent 3,958,891, United States Patent and Trademark Of¬fice, Washington, 1976
Google Scholar
Harlow A.: Skid resistance and pavement marking materials, International Surface Friction Conference: Roads and Runways: Improving Safety Through Assessment and Design, Christchurch, 2005
Google Scholar
Babić D., Fiolić M., Babić D., Gates T.: Road mark-ings and their impact on driver behaviour and road safety: a systematic review of current findings. Jour¬nal of Advanced Transportation, 2020, 7843743; DOI: 10.1155/2020/7843743
DOI: https://doi.org/10.1155/2020/7843743
Google Scholar
Burghardt T.E., Babić D., Babić D.: Application of waterborne road marking paint in Croatia: two years of road exposure. Proceedings of International Confer-ence on Traffic and Transport Engineering, Belgrade, 2016, 1092-1096
Google Scholar
Burghardt T.E., Ščukanec A., Babić D., Babić D.: Durability of waterborne road marking systems with various glass beads. Proceedings of International Conference on Traffic Development, Logistics and Sustainable Transport, Opatija, 2017, 51-58
Google Scholar
Burghardt T.E., Babić D., Pashkevich A.: Sustainability of thin layer road markings based on their service life. Transportation Research Part D: Transport and Environment, 109, 2022, 103339, DOI:10.1016/j.trd.2022.103339
DOI: https://doi.org/10.1016/j.trd.2022.103339
Google Scholar
Fwa T.F.: Skid resistance determination for pavement management and wet-weather road safety. Internation-al Journal of Transportation Science and Technology, 6, 3, 2017, 217-227, DOI: 10.1016/j.ijtst.2017.08.001
DOI: https://doi.org/10.1016/j.ijtst.2017.08.001
Google Scholar
Yu M., You Z., Wu G., Kong L., Liu C., Gao J.: Measurement and modeling of skid resis-tance of asphalt pavement: a review. Construc-tion and Building Materials, 260, 2020, 119878, DOI: 10.1016/j.conbuildmat.2020.119878
DOI: https://doi.org/10.1016/j.conbuildmat.2020.119878
Google Scholar
Fwa T.F.: Determination and prediction of pave¬ment skid resistance–connecting research and prac-tice. Journal of Road Engineering, 1, 2021, 43-62, DOI: 10.1016/j.jreng.2021.12.001
DOI: https://doi.org/10.1016/j.jreng.2021.12.001
Google Scholar
Guo F., Pei J., Zhang J., Li R., Zhou B., Chen Z.: Study on the skid resistance of asphalt pavement: a state-of-the-art review and future prospective. Construction and Building Materials, 303, 2021, 124411, DOI: 10.1016/j.conbuildmat.2021.124411
DOI: https://doi.org/10.1016/j.conbuildmat.2021.124411
Google Scholar
Anderson D.A., Henry J.J., Hayhoe G.F.: Prediction and significance of wet skid resistance of pavement marking materials. Transportation Research Record, 893, 1982, 27-32
Google Scholar
Januszke R.M., Richards D.M.: Non-skid road mark-ing paint system. Proceedings of 15th Australian Road Research Board Conference, Darwin, 1990, 181-195
Google Scholar
de Witt A.J., Smith R.A.F., Visser A.T.: Durability and cost effectiveness of road marking paint. South African Transport Conference, Pretoria, 2000
Google Scholar
Pasetto M., Manganaro A.: Study on the effect of sur¬face texture saturation of road pavements with drop on road markings. Proceedings of 5th Pan-European Conference on Planning for Minerals and Transport Infrastructure, Sarajevo, 2006, 275-284
Google Scholar
Rao G.V., Mouli S.C., Boddeti N.K.: Anti skid methods and materials-skid effects and their remedial methods. International Journal of Engineering and Technology, 2, 2010, 87-92
Google Scholar
Karim M., Chyc-Cies J., Hartman B., Schick D., Dechkoff C.: Evaluation of a skid resistant material at high incident intersection locations. Conference of the Transportation Association of Canada, Fredericton, 2012
Google Scholar
Pasetto M., Barbati S.D.: Experimental investigation on road marking distress evolution: beyond testing, quality assurance and maintenance improvement. Advanced Materials Research, 723, 2013, 846-853, DOI: 10.4028/www.scientific.net/AMR.723.846
DOI: https://doi.org/10.4028/www.scientific.net/AMR.723.846
Google Scholar
Asdrubali F., Buratti C., Moretti E., D’Alessandro F., Schiavoni S.: Assessment of the perfor-mance of road markings in urban areas: the out-comes of the CIVITAS Renaissance project. Open Transportation Journal, 7, 2013, 7-19, DOI: 10.2174/1874447801307010007
DOI: https://doi.org/10.2174/1874447801307010007
Google Scholar
Kajánek P., Ondrejka R.: Pedestrian safety at cros¬sings. Acta Tecnología, 1, 2, 2015, 1-4
DOI: https://doi.org/10.22306/atec.v1i2.4
Google Scholar
Richard C., Doré G., Lemieux C., Bilodeau J. P., Haure-Touzé J.: Albedo of pavement surfacing materials: in situ measurements. In: Guthrie W.S. (ed.): Cold Regions Engineering 2015: Developing and Maintaining Resilient Infrastructure, 181-192, DOI: 10.1061/9780784479315.017
DOI: https://doi.org/10.1061/9780784479315.017
Google Scholar
Siyahi A., Kavussi A., Boroujerdian B.M.: Enhancing skid resistance of two-component road marking paint using mineral and recycled materials. International Journal of Transportation Engineering, 3, 3, 2016, 195-205, DOI: 10.22119/IJTE.2016.14773
Google Scholar
Kozak P., Matuszkova R., Radimsky M.: Mea¬surement of acoustic properties of the safety anti-skid modification - ROCBINDA™. Ad-vanced Materials Research, 1145, 2018, 140-145, DOI: 10.4028/www.scientific.net/AMR.1145.140
DOI: https://doi.org/10.4028/www.scientific.net/AMR.1145.140
Google Scholar
Naidoo S., Steyn W.: Performance of thermoplastic road marking material. Journal of the South African Institution of Civil Engineering, 60, 2, 2018, 9-22, DOI: 10.17159/2309-8775/2018/v60n2a2
DOI: https://doi.org/10.17159/2309-8775/2018/v60n2a2
Google Scholar
Nassiri S., Rodin III H., Yekkalar M.: Evaluation of motorcyclists’ and bikers’ safety on wet pavement markings. PackTrans and Washington State University, Seattle, 2018
Google Scholar
Coves-Campos A., Bañón L., Coves-García J., Ivorra S.: In situ study of road marking durabili¬ty using glass microbeads and antiskid aggregates as drop-on materials. Coatings, 8, 10, 2018, 371, DOI: 10.3390/coatings8100371
DOI: https://doi.org/10.3390/coatings8100371
Google Scholar
Hadizadeh E., Pazokifard S., Mirabedini S. M., Ashrafian H.: Optimizing practical properties of MMA-based cold plastic road marking paints using mixture experimental design. Progress in Organic Coatings, 147, 2020, 105784, DOI: 10.1016/j. porgcoat.2020.105784
DOI: https://doi.org/10.1016/j.porgcoat.2020.105784
Google Scholar
Purohit K., Rahman M., Price A., Woodside A.: Assessment of preformed 3D-thermoplastic road markings for long-term durability, skid resis-tance and texture functionality. In: Raab C. (ed.): Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements - Mairepav9, Springer, Cham, 2020, 965-974, DOI: 10.1007/978-3-030-48679-2_90
DOI: https://doi.org/10.1007/978-3-030-48679-2_90
Google Scholar
Pasetto M., Barbati S.D.: Definition and validation of a new methodical approach for friction eval-uations of dropped-on products for road markings. 3rd International Surface Friction Conference, Gold Coast, 2011
Google Scholar
Piyatrapoomi N., Weligamage J., Kumar A., Bunker J.: Identifying relationship between skid resistance and road crashes using probability-based approach. 2nd International Safer Roads Conference, Cheltenham, 2008
Google Scholar
Ivan J.N., Ravishanker N., Jackson E., Aronov B., Guo S.: A statistical analysis of the effect of wet-pavement friction on highway traffic safety. Journal of Transportation Safety & Security, 4, 2, 2012, 116-136, DOI: 10.1080/19439962.2011.620218
DOI: https://doi.org/10.1080/19439962.2011.620218
Google Scholar
Pitaksringkarn J., Tanwanichkul L., Yamthale K.: A correlation between pavement skid resistance and wet-pavement related accidents in Thailand. MATEC Web of Conferences, 192, 2018, 02049, DOI: 10.1051/matecconf/201819202049
DOI: https://doi.org/10.1051/matecconf/201819202049
Google Scholar
Tournier I., Dommes A., Cavallo V.: Review of safety and mobility issues among older pedestrians. Accident Analysis & Prevention, 91, 2016, 24-35, DOI: 10.1016/j.aap.2016.02.031
DOI: https://doi.org/10.1016/j.aap.2016.02.031
Google Scholar
Cleland B.S., Walton D., Thomas J.A.: The relative effects of road markings on cycle stability. Safety Science, 43, 2, 2005, 75-89, DOI: 10.1016/j.ssci.2005.01.001
DOI: https://doi.org/10.1016/j.ssci.2005.01.001
Google Scholar
Standard EN 1436:2018 Road marking materials – Road marking performance for road users and test methods
Google Scholar
Standard EN 13036-4:2011 Road and airfield sur-face characteristics – Test methods – Part 4: method for measurement of slip/skid resistance of a surface – The pendulum test
Google Scholar
Standard ASTM E 303:1993 Standard test method for measuring surface frictional properties using the British pendulum tester
Google Scholar
Rozporządzenie Ministra Infrastruktury z dn. 3 lipca 2003 r., załącznik nr 2: Szczegółowe warunki technicz¬ne dla znaków drogowych poziomych i warunki ich umieszczania na drogach. Dz. U. nr 220, poz. 2181, 2019
Google Scholar
Standard ONR 22441:2015 Richtlinien zur Spezifikation von Bodenmarkierungen und Bodenmarkierungs-material
Google Scholar
Manual on Uniform Traffic Control Devices for Streets and Highways. United States Department of Transportation, Federal Highway Administration, Washington, 2009
Google Scholar
Giles C., Sabey B., Cardew K.H.: Development and performance of the portable skid-resistance tester. Symposium on Skid Resistance, New York, 1962, 50-74, DOI: 10.1520/STP44406S
DOI: https://doi.org/10.1520/STP44406S
Google Scholar
Chu L., Guo W., Fwa T.F.: Theoretical and practical engineering significance of British pendulum test. International Journal of Pavement Engineering, 23, 1, 2020, DOI: 10.1080/10298436.2020.1726351
DOI: https://doi.org/10.1080/10298436.2020.1726351
Google Scholar
Hiti M., Ducman V.: Analysis of the slider force calibration procedure for the British pendulum skid resistance tester. Measurement Science and Technology, 25, 2, 2014, 025013, DOI: 10.1088/0957-0233/25/2/025013
DOI: https://doi.org/10.1088/0957-0233/25/2/025013
Google Scholar
Guo W., Chu L., Fwa T.F.: Evaluation of calibration procedures of British pendulum tester. Journal of Testing and Evaluation, 49, 3, 2020, 1729-1746, DOI: 10.1520/JTE20200288
DOI: https://doi.org/10.1520/JTE20200288
Google Scholar
Guo W., Chu L., Fwa T.F.: Improved calibration procedure for British pendulum tester. In: Pa¬sindu H.R., Bandara S., Mampearachchi W.K., Fwa T.F. (eds.): Road and Airfield Pavement Technology, Springer, Cham, 2022, 209-219, DOI: 10.1007/978-3-030-87379-0_15
DOI: https://doi.org/10.1007/978-3-030-87379-0_15
Google Scholar
Guo W., Chu L., Fwa T.F.: Mechanistic harmonization of British pendulum test measurements. Measurement, 182, 2021, 109618, DOI: 10.1016/j.measurement.2021.109618
DOI: https://doi.org/10.1016/j.measurement.2021.109618
Google Scholar
Primožič V., Hiti M.: Investigation of the British pendulum calibration uncertainty by Monte Carlo simulation. Measurement Science and Technology, 33, 1, 2021, 015004, DOI: 10.1088/1361-6501/ac2c4b
DOI: https://doi.org/10.1088/1361-6501/ac2c4b
Google Scholar
Lundkvist S.O., Isacsson U.: Prediction of road marking performance. Journal of Transportation Engineering, 133, 6, 2007, 341-346, DOI: 10.1061/(ASCE)0733-947X(2007)133:6(341)
DOI: https://doi.org/10.1061/(ASCE)0733-947X(2007)133:6(341)
Google Scholar
Wang D.W., Schacht A., Schmidt S., Oeser M., Steinauer B., Chen X.H.: Continuous evaluation of the road skid resistance with ViaFriction. Applied Mechanics and Materials, 405, 2013, 1791-1794, DOI:10.4028/www.scientific.net/AMM.405- 408.1791
DOI: https://doi.org/10.4028/www.scientific.net/AMM.405-408.1791
Google Scholar
Steinauer B., Oeser M., Kemper D., Schacht A., Klein G.M.: Dynamische Messung der Griffigkeit von Fahrbahnmarkierungen. Verkehrstechnik Heft V 239, Berichte der Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2014
Google Scholar
Schacht A., Oeser M.: Bewertung der Griffigkeit von Fahrbahnmarkierungen bei Naesse. Straße und Autobahn, 65, 8, 2014, 583-590
Google Scholar
Wälivaara B.: Validering av VTI-PFT version 4: mätningar på plana och profilerade vägmarkeringar. Swedish National Road and Transport Research Institute VTI, Linköping, 2007, http://www.diva-portal. org/smash/get/diva2:670355/FULLTEXT01.pdf, 20.12.2022
Google Scholar
Andriejauskas T., Vorobjovas V., Mielonas V.: Evaluation of skid resistance characteristics and measurement methods. Proceedings of the 9th International Conference “Environmental Engineering”, Vilnius, 2014
DOI: https://doi.org/10.3846/enviro.2014.141
Google Scholar
Rasol M., Schmidt F., Ientile S., Adelaide L., Nedjar B., Kane M., Chevalier C.: Progress and monitoring opportunities of skid resistance in road transport: a critical review and road sensors. Remote Sensing, 13, 18, 2021, 3729, DOI: 10.3390/rs13183729
DOI: https://doi.org/10.3390/rs13183729
Google Scholar
Standard EN 1423:2012 Road marking materials. Drop on materials. Glass beads, antiskid aggregates and mixtures of the two
Google Scholar
Sandhu N.K., Axe L., Ndiba P.K., Jahan K.: Metal and metalloid concentrations in domestic and imported glass beads used for highway marking. Environmental Engineering Science, 30, 7, 2013, 387-392, DOI: 10.1089/ees.2013.0023
DOI: https://doi.org/10.1089/ees.2013.0023
Google Scholar
dos Santos É.J., Herrmann A.B., Prado S.K., Fantin E.B., dos Santos V.W., de Oliveira A.V.M., Curtius A.J.: Determination of toxic elements in glass beads used for pavement marking by ICP OES. Microchemical Journal, 108, 2013, 233-238, DOI: 10.1016/j.microc.2012.11.003
DOI: https://doi.org/10.1016/j.microc.2012.11.003
Google Scholar
Specification AP-S0042. Glass beads for use in pavement marking paints. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering Division, Highett, 2013
Google Scholar
Burghardt T.E., Pashkevich A.: Green Public Procurement criteria for road marking materials from insiders' perspective. Journal of Cleaner Production, 298, 2021, 126521, DOI: 10.1016/j.jclepro.2021.126521
DOI: https://doi.org/10.1016/j.jclepro.2021.126521
Google Scholar
Burghardt T.E., Ettinger K., Köck B., Hauzenberger C.: Glass beads for road markings and other industrial usage: crystallinity and hazardous elements. Case Studies in Construction Materials, 17, 2022, e01213, DOI: 10.1016/j.cscm.2022.e01213
DOI: https://doi.org/10.1016/j.cscm.2022.e01213
Google Scholar
Migaszewski Z.M., Gałuszka A., Dołęgowska S., Michalik A.: Glass microspheres in road dust of the city of Kielce (south-central Poland) as markers of traffic-related pollution. Journal of Hazardous Materials, 431, 2021, 125355, DOI: 10.1016/j.jhazmat.2021.125355
DOI: https://doi.org/10.1016/j.jhazmat.2021.125355
Google Scholar
Pike A.M., Songchitruksa P.: Predicting pavement marking service life with transverse test deck data. Transportation Research Record: Journal of the Transportation Research Board, 2482, 1, 2015, 16-22, DOI: 10.3141/2482-03
DOI: https://doi.org/10.3141/2482-03
Google Scholar
Ryś D., Judycki J., Jaskuła P.: Analysis of effect of overloaded vehicles on fatigue life of flexible pavements based on weigh in motion (WIM) data. International Journal of Pavement Engineering, 17, 8, 2016, 716-726, DOI: 10.1080/10298436.2015.1019493
DOI: https://doi.org/10.1080/10298436.2015.1019493
Google Scholar
Burghardt T.E., Pashkevich A.: Emissions of volatile organic compounds from road marking paints. Atmospheric Environment, 193, 2018, 153-157, DOI: 10.1016/j.atmosenv.2018.08.065
DOI: https://doi.org/10.1016/j.atmosenv.2018.08.065
Google Scholar
Sarasua W., Clarke D., Davis W.: Evaluation of interstate pavement marking retroreflectivity. Report FHWA-SC-03-01. South Carolina Department of Transportation, Columbia, 2003
Google Scholar
Burghardt T.E., Pashkevich A., Żakowska L.: Influence of volatile organic compounds emissions from road marking paints on ground-level ozone formation: case study of Kraków, Poland. Transportation Research Procedia, 14, 2016, 714-723, DOI: 10.1016/j.trpro.2016.05.338
DOI: https://doi.org/10.1016/j.trpro.2016.05.338
Google Scholar
Burghardt T.E., Pashkevich A., Bartusiak J.: Solution for a two-year renewal cycle of structured road markings. Roads and Bridges – Drogi i Mosty, 20, 1, 2021, 5-18, DOI: 10.7409/rabdim.021.001
Google Scholar
Cruz M., Klein A., Steiner V.: Sustainability assessment of road marking systems. Transportation Research Procedia, 14, 2016, 869-875, DOI: 10.1016/j.trpro.2016.05.035
DOI: https://doi.org/10.1016/j.trpro.2016.05.035
Google Scholar
Wenzel K.M., Burghardt T.E., Pashkevich A., Buckermann W.A.: Glass beads for road markings: surface damage and retroreflection decay study. Applied Sciences, 12, 4, 2022, 2258, DOI: 10.3390/app12042258
DOI: https://doi.org/10.3390/app12042258
Google Scholar