Roads and Bridges - Drogi i Mosty
16, 2, 2017, 131-145

Live load transverse distribution in a road slab-girder bridge made of FRP composite girders

Mateusz Rajchel Mail
Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture, 2 Poznańska Street, 35-084 Rzeszów
Tomasz Siwowski Mail
Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture, 2 Poznańska Street, 35-084 Rzeszów
Published: 2017-06-30

Abstract

The paper presents an analysis of the parameters of live load transverse distribution in the span of a road bridge that is made of four box FRP composite girders and a composite deck slab made of lightweight concrete. The parameters were determined experimentally and computationally using the orthotropic plate model included in the Cusens-Pam solution and also the numerical FEM model. The measured values of load transverse distribution factors and influence lines were determined during bridge load testing. A comparison of the measured and calculated load transverse distribution factors is shown on the basis of the analysis of the girders' deflection in their cross-section in the middle of the bridge span. As a result of this comparison, it was proved that the analytical model of the orthotropic plate and also the numerical shell-solid FEM model have a high compliance of load transverse distribution with the distribution obtained from the measurements. In addition, computational analysis and tests showed a sufficient flexural rigidity and high torsional rigidity of the bridge span (the bridge construction belongs to a group of structures with a low overall rigidity of k = 300 kN/mm), confirming that the FRP composite girders that were used for its construction can be an alternative to the concrete and steel girders that are commonly used in the construction of bridges.

Keywords


comparative analysis, FEM, FRP composite girder, live load transverse distribution, load test, road bridge

Full Text:

PDF PDF

References


Westergaard, H.M.: Computations of stresses in bridge slabs due to wheel loads. Public Roads, 11, 1, 1930, 1-23

Courbon J.: Calcul des ponts á poutres multiples solidarisëes par des entretoises. Annales des Ponts et Chaussëes, mëmoires et documents relative á I'art des constructions au service de I’ingënieur, 17, 1940, 293-322

Karaś S.: O metodzie Courbona. Drogownictwo, LXVI, 5, 2011, 172-176

Leonhardt F.: Die vereinfachte Berechnung zweiseitig gelagerter Trägerroste. Ernst & Sohn, 1939

Guyon Y.: Calcul des ponts larges a poutres multiples solidarisees par les entretoises. Annales des Ponts et Chaussees, 24, 1946, 553-612

Massonnet Ch.: Méthode de calcul des ponts á poutres multiples tenant compte de leur re-sistance á la torsion. International Association for Bridge and Structural Engineering, 1950

Bareš R., Massonnet Ch.: Analysis of Beam Grids and Orthotropic Plates by the Guyon - Massonnet - Bareš Method. Crosby Lockwood & Son Ltd, SNTL, 1968

Cusens A.R., Pama R.P.: Analiza statyczna pomostów. WKiŁ, Warszawa, 1981

Hołowaty J.: Numeryczny sposób rozdziału obciążeń ruchomych w mostach drogowych. Roads and Bridges - Drogi i Mosty, 9, 4, 2010, 29-46

Machelski C.: Parametry rozdziału poprzecznego obciążeń w mostach. Roads and Bridges - Drogi i Mosty, 13, 2, 2014, 131-143

Barr P., Eberhard M., Stanton J.: Live-Load Distribution Factors in Prestressed Concrete Girder Bridges. Journal of Bridge Engineering, 6, 5, 2001, 298-306

American Association of State Highway and Transportation Officials AASHTO. LRFD bridge design specifications, Washington, DC, 2005

Murat D., Semih E.: Live Load Distribution Formulas for Single-Span Prestressed Concrete Integral Abutment Bridge Girders. Journal of Bridge Engineering, 14, 6, 2009, 472-486

Ziehl P., Engelhardt M., Fowler T., Ulloa F., Medlock R., Schell E.: Design and Field Evaluation of Hybrid FRP/Reinforced Concrete Superstructure System. Journal of Bridge Engineering, 14, 5, 2009, 309-318

Zoghi M.: The International Handbook of FRP Composites in Civil Engineering. Boca Raton. CRC Press, Taylor & Francis Group LLC, 2014

Siwowski T., Rajchel M.: Kształtowanie mostowych dźwigarów hybrydowych typu „kompozyt FRP - beton”. Journal of Civil Engineering, Environment and Architecture, 63, 2, 2016, 307-320

Chen Y., Ziehl P.H., Harrison K.W.: Experimental characterization and optimization of hybrid FRP/RC bridge superstructure system. Journal of Bridge Engineering 14, 1, 2009, 45-54

Kitane Y., Aref A.: Static and fatigue testing of hybrid fiber-reinforced polymer - concrete bridge superstructure. Journal of Composites for Construction, 8, 2, 2004, 182-190

Siwowski T., Rajchel M., Kaleta D., Własak L.: Pierwszy w Polsce most drogowy z kompozytów FRP. Inżynieria i Budownictwo, 72, 10, 2016, 534-538

Siwowski T., Kaleta D., Kulpa M.: Projekt pierwszego polskiego mostu drogowego z kompozytów FRP. Inżynieria i Budownictwo, 71, 9, 2015, 465-470

Szczygieł J.: Mosty z betonu zbrojonego i sprężonego. WKiŁ, Warszawa, 1978

Machelski C.: Obliczanie mostów z belek prefabrykowanych. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2006

JRC Science for Policy Report. Prospect for new guidance in the design on FRP. Support to the implementation, harmonization and failure development of the Eurocodes, 2016


Live load transverse distribution in a road slab-girder bridge made of FRP composite girders

  
Rajchel, Mateusz; Siwowski, Tomasz. Live load transverse distribution in a road slab-girder bridge made of FRP composite girders. Roads and Bridges - Drogi i Mosty, [S.l.], v. 16, n. 2, p. 131-145, jun. 2017. ISSN 2449-769X. Available at: <>. Date accessed: 29 Mar. 2024. doi:http://dx.doi.org/10.7409/rabdim.017.009.