Roads and Bridges - Drogi i Mosty
22, 4, 2023, 533-548

Prediction of irreversible susceptibility and elastic recurrence of asphalts modified with waste plastomers in MSCR study

Grzegorz Mazurek Mail
https://orcid.org/0000-0002-9735-1725
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Transportation Engineering, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce
Przemysław Buczyński Mail
https://orcid.org/0000-0003-0798-8093
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Transportation Engineering, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce
Marek Iwański Mail
https://orcid.org/0000-0002-0414-682X
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Transportation Engineering, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce
Artur Kowalczyk Mail
https://orcid.org/0009-0005-1889-3382
TRAKT, 1 Szczukowskie Górki St., 26-065 Piekoszów
Marcin Podsiadło Mail
https://orcid.org/0000-0002-9188-3472
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Department of Transportation Engineering, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce
Published: 2023-12-30

Abstract

This paper evaluates the possibility of predicting the microstructure characteristics of the irreversible part of the susceptibility modulus and the percentage recurrence in the MSCR test by means of basic asphalt properties. Seven variables were controlled in the research. Two types of asphalt 20/30 and 70/100 and two types of waste plastomer were used for the research. The entire research process was governed by the Plackett-Burman plan. The results were enriched by microstructure analysis of the waste plastomer dispersion in asphalt. As a result, it was found that the effect of microstructure on the irreversible part of the susceptibility modulus and percentage recurrence was not significant. In contrast, the mixing process significantly influenced the dispersion state of the plastomer particles in the asphalt. With the MARS technique, it has been possible to relate basic asphalt characteristics such as penetration, softening temperature, fracture temperature and dynamic viscosity to the irreversible part of the susceptibility modulus and percentage recurrence with efficiency expressed by a determination coefficient of R2=99%. It was also pointed out that the type of plastomer plays a significant role in shaping the percentage of asphalt conversion.

Keywords


asphalt modification, waste plastomer, MARS, polymer morphology, recycling

Full Text:

PDF

References


Christensen D.W., Bonaquist R.: Use of Strength Tests for Evaluating the Rut Resistance of Asphalt Concrete. Journal of the Association of Asphalt Paving Technologists, 71, 2002, 692–711

Nizamuddin S., Boom Y.J., Giustozzi F.: Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers, 13, 19, 3242, 2021, DOI: 10.3390/polym13193242

Iwański M., Chomicz-Kowalska A., Mazurek G., Buczyński P., Cholewińska M., Iwański M.M., Maciejewski K., Ramiączek P.: Effects of the Water-Based Foaming Process on the Basic and Rheological Properties of Bitumen 70/100. Materials, 14, 11, 2803, 2021, DOI: 10.3390/ma14112803

Zhu J., Birgisson B., Kringos N.: Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 2014, 18–38, DOI: 10.1016/j.eurpolymj.2014.02.005

Read J., Whiteoak D., Hunter R.N.: The Shell Bitumen handbook, 5th edition. London, Thomas Telford Publishing, 2003

Dong F., Zhao W., Zhang Y., Wei J., Fan W., Yu Y., Wang Z.: Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt. Construction and Building Materials, 62, 2014, 1–7, DOI: 10.1016/j.conbuildmat.2014.03.018

Airey G.: Rheological properties of styrene butadiene styrene polymer modified road bitumens⋆. Fuel, 82, 14, 2003, 1709–1719, DOI: 10.1016/S0016-2361(03)00146-7

Li B., Li X., Kundwa M.J., Li Z., Wei D.: Evaluation of the adhesion characteristics of material composition for polyphosphoric acid and SBS modified bitumen based on surface free energy theory. Construction and Building Materials, 266, 121022, 2021, DOI: 10.1016/j.conbuildmat.2020.121022

Padhan R.K., Sreeram A.: Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Construction and Building Materials, 188, 2018, 772–780, DOI: 10.1016/j.conbuildmat.2018.08.155

Airey G.D.: Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16, 8, 2002, 473–487, DOI: 10.1016/S0950-0618(02)00103-4

Mazurek G., Šrámek J., Buczyński P.: Composition Optimisation of Selected Waste Polymer-Modified Bitumen. Materials, 15, 24, 8714, 2022, DOI: 10.3390/ma15248714

Singh B., Kumar L., Gupta M., Chauhan G.S.: Polymer-modified bitumen of recycled LDPE and maleated bitumen. Journal of Applied Polymer Science, 127, 1, 2013, 67–78, DOI: 10.1002/app.36810

Khakimullin Y.N.: Properties of Bitumens Modified by Thermoplastic Elastomers. Mechanics of Composite Materials, 36, 5, 2000, 417–422, DOI: 10.1023/A:1026659520096

Airey G.D.: Styrene butadiene styrene polymer modification of road bitumens. Journal of Materials Science, 39, 3, 2004, 951–959, DOI: 10.1023/B:JMSC.0000012927.00747.83

Giavarini C., De Filippis P., Santarelli M.L., Scarsella M.: Production of stable polypropylene-modified bitumens. Fuel, 75, 6, 1996, 681–686, DOI: 10.1016/0016-2361(95)00312-6

Pyshyev S., Gunka V., Grytsenko Y., Bratychak M.: Polymer Modified Bitumen: Review. Chemistry & Chemical Technology, 10, 4s, 2016, 631–636, DOI: 10.23939/chcht10.04si.631

Liu P., Lu K., Li J., Wu X., Qian L., Wang M., Gao S.: Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates. Journal of Hazardous Materials, 384, 121193, 2020, DOI: 10.1016/j.jhazmat.2019.121193

Pandey A., Islam Sk.S., G.D. Ransingchung R.N., Ravindranath S.S.: Comparing the performance of SBS and thermoplastics modified asphalt binders and asphalt mixes. Road Materials and Pavement Design, 24, sup1, 2023, 369–388, DOI: 10.1080/14680629.2023.2180999

Ragaert K., Delva L., Van Geem K.: Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 2017, 24–58, DOI: 10.1016/j.wasman.2017.07.044

Geyer R., Jambeck J.R., Law K.L.: Production, use, and fate of all plastics ever made. Science Advances, 3, 7, e1700782, 2017, DOI: 10.1126/sciadv.1700782

Casey D., McNally C., Gibney A., Gilchrist M.D.: Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling, 52, 10, 2008, 1167–1174, DOI: 10.1016/j.resconrec.2008.06.002

Awad A., Al-Adday F.: Utilization of waste plastics to enhance the performance of modified hot mix asphalt. International Journal of GEOMATE, 13, 40, 2017, 132–139, DOI: 10.21660/2017.40.170603

El-Naga I.A., Ragab M.: Benefits of utilization the recycle polyethylene terephthalate waste plastic materials as a modifier to asphalt mixtures. Construction and Building Materials, 219, 2019, 81–90, DOI: 10.1016/j.conbuildmat.2019.05.172

Choudhary R., Kumar A., Murkute K.: Properties of Waste Polyethylene Terephthalate (PET) Modified Asphalt Mixes: Dependence on PET Size, PET Content, and Mixing Process. Periodica Polytechnica Civil Engineering, 62, 2018, DOI: 10.3311/PPci.10797

Wang J., Yuan J., Xiao F., Li Z., Wang J., Xu Z.: Performance investigation and sustainability evaluation of multiple-polymer asphalt mixtures in airfield pavement. Journal of Cleaner Production, 189, 2018, 67–77, DOI: 10.1016/j.jclepro.2018.03.208

EN 1426:2015 Bitumen and bituminous binders – Determination of needle penetration

EN 1427:2015 Bitumen and bituminous binders – Determination of the softening point – Ring and Ball method

EN 12593:2015 Bitumen and bituminous binders – determination of the Fraass breaking point

ASTM D4402:2015 Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer

Plackett R.L., Burman J.P.: The Design of Optimum Multifactorial Experriments. Biometrika, 33, 4, 1946, 305–325, DOI: 10.1093/biomet/33.4.305

Mazurek G., Podsiadło M.: Optimisation of Polymer Addition Using the Plackett-Burman Experiment Plan. IOP Conference Series: Materials Science and Engineering, 1203, 022003, 2021, DOI: 10.1088/1757-899x/1203/2/022003

Modarres A., Hamedi H.: Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Materials & Design, 61, 2014, 8–15, DOI: 10.1016/j.matdes.2014.04.046

Brasileiro L., Moreno-Navarro F., Tauste-Martínez R., Matos J., Rubio-Gámez M.C.: Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability, 11, 3, 646, 2019, DOI: 10.3390/su11030646

García-Morales M., Partal P., Navarro F.J., Martínez-Boza F., Mackley M.R., Gallegos C.: The rheology of recycled EVA/LDPE modified bitumen. Rheologica Acta, 43, 5, 2004, 482–490, DOI: 10.1007/s00397-004-0385-4

McShane S.L., Von Glinow M.A., Sharma R.R.: Organizational behavior: emerging knowledge and pracitice for the real world. New Delhi, Tata McGraw Hill Education, 2011

Hastie T., Tibshirani R., Friedman. J.H.: The elements of statistical learning: data mining, inference, and prediction. Second Edition. New York, Springer, 2009

AASHTO TP 70 Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)

EN 13632 Bitumen and bituminous binders – Visualisation of polymer dispersion in polymer modified bitumen

Schneider C.A., Rasband W.S., Eliceiri K.W.: NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 7, 2012, 671–675, DOI: 10.1038/nmeth.2089

Ralph B., Kurzydłowski K.J.: The philosophy of microscopic quantification. Materials Characterization, 38, 4–5, 1997, 217–227, DOI: 10.1016/S1044-5803(97)00051-X

Hamid A., Baaj H., El-Hakim M.: Predicting the Recovery and Nonrecoverable Compliance Behaviour of Asphalt Binders Using Artificial Neural Networks. Processes, 10, 12, 2633, 2022, DOI: 10.3390/pr10122633

AASHTO M 332-2022 Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test

Lander J.P., Włodarz M.: R dla każdego: zaawansowane analizy i grafika statystyczna. APN Promise, Warszawa, 2018, Warszawa, 2018


Prediction of irreversible susceptibility and elastic recurrence of asphalts modified with waste plastomers in MSCR study

  
Mazurek, Grzegorz et al. Prediction of irreversible susceptibility and elastic recurrence of asphalts modified with waste plastomers in MSCR study. Roads and Bridges - Drogi i Mosty, [S.l.], v. 22, n. 4, p. 533-548, dec. 2023. ISSN 2449-769X. Available at: <>. Date accessed: 29 Apr. 2024. doi:http://dx.doi.org/10.7409/RABDIM.023.034.