Cebon D.: Vehicle-generated road damage: a review. Vehicle system dynamics, 18, 1-3, 1989, 107-150, DOI: 10.1080/00423118908968916
DOI: https://doi.org/10.1080/00423118908968916
Google Scholar
Hassan Y., Abd El Halim A.O., Razaqpur A.G., Bekheet W., Farha M.H.: Effects of runway deicers on pavement materials and mixes: comparison with road salt. Journal of Transportation Engineering, 128, 4, 2002, 385-391, DOI: 10.1061/(ASCE)0733-947X(2002)128:4(385)
DOI: https://doi.org/10.1061/(ASCE)0733-947X(2002)128:4(385)
Google Scholar
Chlipalski K.: Błędy popełniane podczas budowy i eksploatacji dróg. Drogownictwo, 10, 2007, 120-124
Google Scholar
Leonovich I., Melnikova I.: Influence of temperature on the formation of damages in asphalt concrete pavements under climatic conditions of the Republic of Belarus. The Baltic Journal of Road and Bridge Engineering, 7, 1, 2012, 42-47, DOI: 10.3846/bjrbe.2012.06
DOI: https://doi.org/10.3846/bjrbe.2012.06
Google Scholar
Talvik O., Aavik A.: Use of FWD deflection basin parameters (SCI, BDI, BCI) for pavement condition assessment. The Baltic Journal of Road and Bridge Engineering, 4, 4, 2009, 196-202, DOI: 10.3846/1822-427X.2009.4.196-202
DOI: https://doi.org/10.3846/1822-427X.2009.4.196-202
Google Scholar
Loizos A., Al-Qadi I., Scarpas T.: Bearing Capacity of Roads, Railways and Airfields, CRC Press, Londyn, 2017
DOI: https://doi.org/10.1201/9781315100333
Google Scholar
Pożarycki A., Górnaś P., Wanatowski D.: The influence of frequency normalisation of FWD pavement measurements on backcalculated values of stiffness moduli. Road Materials and Pavement Design, 20, 1, 2019, 1-19, DOI: 10.1080/14680629.2017.1374991
DOI: https://doi.org/10.1080/14680629.2017.1374991
Google Scholar
Yu S., Sukumar S.R., Koschan A.F., Page D.L., Abidi M.A.: 3D reconstruction of road surfaces using an integrated multi-sensory approach. Optics and Lasers in Engineering, 45, 7, 2007, 808-818, DOI: 10.1016/j.optlaseng.2006.12.007
DOI: https://doi.org/10.1016/j.optlaseng.2006.12.007
Google Scholar
Soilán M., Sánchez-Rodríguez A., del Río-Barral P., Perez-Collazo C., Arias P., Riveiro B.: Review of laser scanning technologies and their applications for road and railway infrastructure monitoring. Infrastructures, 4, 4, 2019, ID articles: 58, DOI: 10.3390/infrastructures4040058
DOI: https://doi.org/10.3390/infrastructures4040058
Google Scholar
Zhou Y., Guo X., Hou F., Wu J.: Review of Intelligent Road Defects Detection Technology. Sustainability, 14, 10, 2022, ID article: 6306, DOI: 10.3390/su14106306
DOI: https://doi.org/10.3390/su14106306
Google Scholar
Maeda H., Sekimoto S., Seto T., Kashiyama T., Omata H.: Road damage detection and classification using deep neural networks with smartphone images. Computer-Aided Civil and Infrastructure Engineering, 33, 12, 2018, 1127-1141, DOI: 10.1111/mice.12387
DOI: https://doi.org/10.1111/mice.12387
Google Scholar
Ranyal E., Sadhu A., Jain K.: Road condition monitoring using smart sensing and artificial intelligence: A review. Sensors, 22, 8, 2022, 3044, DOI: 10.3390/s22083044
DOI: https://doi.org/10.3390/s22083044
Google Scholar
Heller S., Mechowski T., Harasim P.: Wykorzystanie badań diagnostycznych stanu nawierzchni do rozpoznania miejsc niebezpiecznych dla użytkowników drogi. Roads and Bridges - Drogi i Mosty, 9, 1, 2010, 57-75
Google Scholar
Inzerillo L., Di Mino G., Roberts R.: Image-based 3D reconstruction using traditional and UAV datasets for analysis of road pavement distress. Automation in Construction, 96, 2018, 457-469, DOI: 10.1016/j.autcon.2018.10.010
DOI: https://doi.org/10.1016/j.autcon.2018.10.010
Google Scholar
Kubišta J., Surový P.: Spatial resolution of unmanned aerial vehicles acquired imagery as a result of different processing conditions. Central European Forestry Journal, 67, 3, 2021, 148-154, DOI: 10.2478/forj-2021-0011
DOI: https://doi.org/10.2478/forj-2021-0011
Google Scholar
Höhle J.: Oblique aerial images and their use in cultural heritage documentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W2, 2013, 349-354, DOI: 10.5194/isprsarchives-XL-5-W2-349-2013
DOI: https://doi.org/10.5194/isprsarchives-XL-5-W2-349-2013
Google Scholar
Cai C., Gao Y., Pan L., Jian-Jun Z.: Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research, 56, 1, 2015, 133-143, DOI: 10.1016/j.asr.2015.04.001
DOI: https://doi.org/10.1016/j.asr.2015.04.001
Google Scholar
Tang R., Fritsch D., Cramer M.: New rigorous and flexible Fourier self-calibration models for airborne camera calibration. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 2012, 76-85, DOI: 10.1016/j.isprsjprs.2012.05.004
DOI: https://doi.org/10.1016/j.isprsjprs.2012.05.004
Google Scholar
Ferrer-González E., Agüera-Vega F., Carvajal-Ramírez F., Martínez-Carricondo P.: UAV photogrammetry accuracy assessment for corridor mapping based on the number and distribution of ground control points. Remote Sensing, 12, 15, 2020, 2447, DOI: 10.3390/rs12152447
DOI: https://doi.org/10.3390/rs12152447
Google Scholar
Roberts R., Inzerillo L., Mino G.: Using UAV based 3D modelling to provide smart monitoring of road pavement conditions. Information, 11, 12, 2020, ID article: 568, DOI: 10.3390/info11120568
DOI: https://doi.org/10.3390/info11120568
Google Scholar
Zeybek M., Bicici S.: Road distress measurements using UAV. Turkish Journal of Remote Sensing and GIS, 1, 1, 2020, 13-23
Google Scholar
Liu Y., Zheng X., Ai G., Zhang Y., Zuo Y.: Generating a high-precision true digital orthophoto map based on UAV images. ISPRS International Journal of Geo-Information, 7, 9, 2018, 333, DOI: 10.3390/ijgi7090333
DOI: https://doi.org/10.3390/ijgi7090333
Google Scholar
Mackiewicz P., Mączka E.: Wykorzystanie drona w identyfikacji uszkodzeń nawierzchni. Przegląd komunikacyjny, 2-3, 2022, 32-39
Google Scholar
Cardenal J., Fernández T., Pérez-García J.L., Gómez- -López J.M.: Measurement of road surface deformation using images captured from UAVs. Remote Sensing, 11, 12, 2019, ID article: 1507, DOI: 10.3390/rs11121507
DOI: https://doi.org/10.3390/rs11121507
Google Scholar
Barrile V., Bernardo E., Fotia A., Bilotta G.: Road safety: road degradation survey through images by UAV. WSEAS Transactions on Environment and Development, 16, 2020, 649-659, DOI: 10.37394/232015.2020.16.67
DOI: https://doi.org/10.37394/232015.2020.16.67
Google Scholar
Coenen T.B.J., Golroo A., Lo Presti D.: A review on automated pavement distress detection methods. Cogent Engineering, 4, 1, 2017, ID article: 1374822, DOI: 10.1080/23311916.2017.1374822
DOI: https://doi.org/10.1080/23311916.2017.1374822
Google Scholar
Karaca Y., Cicek M., Tatli O., Sahin A., Pasli S., Beser M.F., Turedi S.: The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations. American Journal of Emergency Medicine, 36, 4, 2018, 583-588, DOI: 10.1016/j.ajem.2017.09.025
DOI: https://doi.org/10.1016/j.ajem.2017.09.025
Google Scholar
Siebert S., Teizer J.: Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, 2014, 1-14, DOI: 10.1016/j.autcon.2014.01.004
DOI: https://doi.org/10.1016/j.autcon.2014.01.004
Google Scholar
Rozporządzenie Wykonawcze Komisji Unii Europejskiej 2019/947 z dnia 24 maja 2019 r. w sprawie przepisów i procedur dotyczących eksploatacji bezzałogowych statków powietrznych. Dz. Urz. UE L 152 z 11.06.2019
Google Scholar
Katalog typowych uszkodzeń nawierzchni bitumicznych dla potrzeb ciągłego obmiaru uszkodzeń metodą oceny wizualnej w systemie oceny stanu nawierzchni SOSN. Generalna Dyrekcja Dróg Krajowych i Autostrad, Warszawa, 2002
Google Scholar
Zhang A., Wang K.C.P., Fei Y., Liu Y., Chen C., Yang G., Li J.Q., Yang E., Qiu S.: Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network. Computer-Aided Civil and Infrastructure Engineering, 34, 3, 2019, 213-229, DOI: 10.1111/mice.12409
DOI: https://doi.org/10.1111/mice.12409
Google Scholar