Giergiczny Z.: Rola popiołów lotnych wapniowych i krzemionkowych w kształtowaniu właściwości współ- czesnych spoiw budowlanych i tworzyw cementowych. Wydawnictwo Politechniki Krakowskiej, Kraków, 2006
Google Scholar
Papayianni I., Tsimas S., Moutsatsou A.: Standarization aspects concerning high calcium fly ashes. Word of Coal Ash Conference, Lexington, 2009
Google Scholar
Studium wykonalności dla Projektu PO IG nr POIG 01.01.02-24-005/09 Innowacyjne spoiwa cementowe i betony z wykorzystaniem popiołu lotnego wapiennego, www.smconcrete.polsl.pl
Google Scholar
Sisomphon K., Franke L.: Carbonation rates of concretes containing high volume of pozzolanic materials. Cement and Concrete Research, 37, 12, 2007, 1647 - 1653
Google Scholar
Rostami V., Shao Y., Boyd A.J., He Z.: Microstructure of cement paste subject to early carbonation curing. Cement and Concrete Research, 42, 1, 2012, 186 - 193
Google Scholar
Stanish K.D., Hooton R.D., Thomas M.D.A.: Testing the chloride penetration resistance of concrete: A literature review. FHWA Contract DTFH61-97-R-00022 “Prediction of Chloride Penetration in Concrete”. Toronto, Ontario, 2000
Google Scholar
Broomfield J. P.: Corrosion of steel in concrete: understanding, investigation and repair. Taylor & Francis, 2007
Google Scholar
Ann K.Y., Ahn J.H., Ryou J.S.: The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Construction and Building Materials, 23, 1, 2009, 239 - 245
Google Scholar
Mehta P.K.: Sulfate attack in marine environment, in: Materials science of concrete: sulfate attack mechanisms, Marchand J. and Sklany J. (eds.). The American Ceramic Society, Westerville, 1999
Google Scholar
Lee S.T.: Performance of mortars exposed to different sulfate concentrations. KSCE Journal of Civil Engineering, 16, 4, 2012, 601 - 609
Google Scholar
Dehwah H.A.F.: Effect of sulfate concentration and associated cation type on concrete deterioration and morphological changes in cement hydrates. Construction and Building Materials, 21, 1, 2007, 29 - 39
Google Scholar
Bakharev T.: Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35, 2005, 1233 - 1246
Google Scholar
Khunthogkeaw J., Tangtermsirikul S., Leelewat T.: A study on carbonation depth prediction for fly ash concrete. Construction and Building Materials. 20, 9, 2006, 744 - 753
Google Scholar
Chindaprasirt P., Chotithanorm C., Cao H.T., Sirivivatnanon V.: Influence of fly ash fineness on the chloride penetration of concrete. Construction and Building Materials, 21, 2, 2007, 356 - 361
Google Scholar
Naik T.R., Singh S.S., Hassain M.M.: Permeability of concrete containing large amounts of fly ash. Cement and Concrete Research, 24, 5, 1994, 913 - 922
Google Scholar
Chindaprasirt P., Kanchanda P., Sathonsaowaphak A., Cao H.T.: Sulfate resistance of blended cements containing fly ash and rice fly ash. Construction and Building Materials, 21, 6, 2007, 1356 - 1361
Google Scholar
Sumer M.: Compressive strength and sulfate resistance properties of concrete containing Class F and Class C fly ashes. Construction and Building Materials, 34, 2012, 531 - 536
Google Scholar
PN-EN 197-1:2012 Cement – Część 1: Skład. wymagania i kryteria zgodności dotyczące cementów powszechnego użytku
Google Scholar
prEN 12390-12:2010 Testing hardened concrete – Part 12: Determination of the potential carbanation resistance of concrete. Accelerated carbonation method
Google Scholar
ASTM C 1202-05 Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration (Rapid Chloride Permeability Test – RCPT)
Google Scholar
PN-B-19707:2003 Cement. Cement specjalny. Skład. wymagania i kryteria zgodności. Załącznik C: Oznaczanie odporności cementu na agresję siarczanową
Google Scholar
CEN/TC 51/WG12/TG1. Sulphate Resistance Testing – State of the Art, 2006
Google Scholar
Kurdowski W.: Chemia cementu i betonu. PWN, Stowarzyszenie Producentów Cementu, Warszawa-Kraków, 2010
Google Scholar
Burden D.: The durability of concrete containing high levels of fly ash. Portland Cement Association, 2006
Google Scholar
Atiş C.D.: Accelerated carbonation and testing of concrete made with fly ash. Construction and Building Materials, 17, 3, 2003, 147 - 152
Google Scholar
Jackiewicz-Rek W., Woyciechowski P.: Ocena podatności na karbonatyzację napowietrzonych betonów z dużą zawartością popiołu. Cement Wapno Beton, 78, 5, 2011, 249 - 256
Google Scholar
Papadakis V.G., Tsimas S.: Supplementary cementing materials in concrete. Part I: efficiency and design. Cement and Concrete Research, 32, 10, 2002, 1525 - 1532
Google Scholar
Naik T.R., Singh S.S., Hossain M.M.: Permeability of concrete incorporating large quantities of fly ash. CBU Report No. 180, Center for By-Product Utilization, University of Wisconsin-Milwaukee, A Porgress Report for EPRI, Palo Alto, 1993
Google Scholar
Wang S., Llamazos E., Baxter L., Fonseca F.: Durability of biomass fly ash concrete: Freezing and thawing and rapid chloride permeability tests. Fuel, 87, 3, 2008. 359 - 364
Google Scholar
Naik T.R., Singh S.S.: Use of high calcium fly ash in cement based construction materials. Proceedings of Fifth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Milwaukee, 1995, 1 - 44
Google Scholar
Neville A.M.: Właściwości betonu. Polski Cement, Kraków, 2000
Google Scholar
Deja J.: Trwałość zapraw i betonów żużlowo-alkalicznych. Polski Biuletyn Ceramiczny, 83, Kraków, 2004
Google Scholar
Duval R., Hornain H.: La durabilité du béton vis-ŕ-vis des eaux agressives, in: La durabilité des bétons, J. Baron and J.P. Ollivier (eds.). Presses Ponts et Chaussées, Paris, 1992, 351 - 391
Google Scholar
Regourd M.: Carbonation accélérée et résistance des ciments aux agressoves, in: Proceeding of the RILEM International Symposium on Carbonation of Concrete. Cement and Concrete Association, Fulmer, 1976
Google Scholar
Chindaprasirt P., Homwuttiwong S., Sirivivatnanon V.: Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research, 34, 7, 2004, 1087 - 1092
Google Scholar
ACI Committee 232 (232.2R-96). Use of fly ash in concrete. American Concrete Institute, Farmington Hill, 1996
Google Scholar
Taylor H.F.W., Gollob R.S.: Microstructural and micro- analytical studies of sulfate attack II. Sulfate-resisting Portland cement: Ferrite composition and hydration chemistry. Cement and Concrete Research, 24, 7, 1994, 1374 - 1358
Google Scholar
Liu S., Yan P., Feng J.: Effect of limestone powder and fly ash on magnesium sulfate resistance of mortar. Journal od Wuhan University of Technology, 25, 4, 2010, 700 - 703
Google Scholar