Kołodziej K., Bichajło L., Siwowski T.: Experimental study on physical and rheological properties of Trinidad Lake Asphalt modified binder. Applied Sciences, 11, 6, 2021, Article ID: 2796, DOI: 10.3390/app11062796
Google Scholar
Radziszewski P., Piłat J., Sarnowski M., Kowalski K., Król J.: Influence of high temperature on properties of materials used in bridge asphalt pavement structures. Roads and Bridges – Drogi i Mosty, 14, 3, 2015, 175-191, DOI: 10.7409/rabdim.015.012
Google Scholar
Wang M., Hu D., Xiao L., Shang F.: Developments of gussasphalt system on steel deck pavement. World Journal of Engineering and Technology, 5, 3B, 2017, 141-147, DOI: 10.4236/wjet.2017.53B016
Google Scholar
Asphalt pavements on bridge decks. European Asphalt Pavement Association, Brussels, 2013, https://www.asphalt.de/fileadmin/user_upload/downloads/EAPA-Brosch%C3%BCren/12-EAPA-Paper-Asphalt-pavements-on-Bridge-Decks-2013.pdf (available: 28.09.2025)
Google Scholar
Fritc H.W., Hean S.: Doświadczenia z izolacjami i nawierzchniami na obiektach mostowych. Based on German original “Erfahrungen mit Bruckenabdichtungen und Bruckenbelagen”. IBDiM, Nowości Zagranicznej Techniki Drogowej, 141, 2000, 85-104 (in Polish)
Google Scholar
Hofko B., Dimitrov M., Schwab O., Weiss F., Rechberger H., Grothe H.: Technological and environmental performance of temperature-reduced mastic asphalt mixtures. Road Materials and Pavement Design, 18, 1, 2016, 22-37, DOI: 10.1080/14680629.2016.1141703
Google Scholar
Weiss F., Baloh P., Pfaller C., Cetintas E.C., Kasper-Giebl A., Wonaschütz A., Dimitrov M., Hofko B., Rechberger H., Grothe H.: Reducing paving emissions and workers’ exposure using novel mastic asphalt mixtures. Building and Environment, 137, 2018, 51-57, DOI: 10.1016/j.buildenv.2018.03.060
Google Scholar
Woszuk A., Franus W.: Use of mix asphalts with reduced compaction temperature and addition of zeolites in real conditions. Budownictwo i Architektura, 15, 1, 2016, 123-132, DOI: 10.24358/Bud-Arch_16_151_13
Google Scholar
Plewa A.: Wpływ rodzaju lepiszcza asfaltowego na właściwości techniczne mieszanek mineralno-asfaltowych. Drogownictwo, 74, 1, 2019, 3-6 (in Polish)
Google Scholar
Wymagania techniczne WT‑2 2014 – część I: Nawierzchnie asfaltowe na drogach krajowych. Mieszanki mineralno‑asfaltowe. Generalna Dyrekcja Dróg Krajowych i Autostrad, Warszawa, 2014 (in Polish)
Google Scholar
Radziszewski P., Sarnowski M., Kowalski K., Król J.: Nawierzchnie asfaltowe na obiektach mostowych. Oficyna Wydawnicza PW, Warszawa, 2016 (in Polish)
Google Scholar
Radziszewski P., Piłat J., Sarnowski M.: Rozwiązania materiałowo-technologiczne izolacji i nawierzchni obiektów mostowych. Warszawa, 2013 (in Polish)
Google Scholar
Widyatmoko I., Elliott R.: Characteristics of elastomeric and plastomeric binders in contact with natural asphalts. Construction and Building Materials, 22, 3, 2008, 239-249, DOI: 10.1016/j.conbuildmat.2005.12.025
Google Scholar
Bilski M.: Właściwości reologiczne asfaltów drogowych modyfikowanych dodatkiem asfaltów naturalnych z uwzględnieniem wpływu starzenia. Praca doktorska, Politechnika Poznańska, 2017 (in Polish)
Google Scholar
He R., Zheng S., Chen H., Kuang D.: Investigation of the physical and rheological properties of Trinidad Lake Asphalt modified bitumen. Construction and Building Materials, 203, 2019, 734-739, DOI: 10.1016/j.conbuildmat.2019.01.120
Google Scholar
Woszuk A., Franus W.: Properties of the warm mix asphalt involving clinoptilolite and Na-P1 zeolite additives. Construction and Building Materials, 114, 2016, 556-563, DOI: 10.1016/j.conbuildmat.2016.03.188
Google Scholar
Iwański M., Murgała J.: Beton asfaltowy w technologii na półciepło z asfaltem spienionym. Drogownictwo, 68, 4, 2013, 110-115 (in Polish)
Google Scholar
Wagner M.: Temperaturabgesenkte Asphalte. FGSV Verlag, Köln, 2009 (in German)
Google Scholar
Belc A.L., Lazar V., Stan A., Buzdugan I.: Influence of different warm mix additives on characteristics of warm mix asphalt. Materials, 14, 2021, Article ID: 3534, DOI: 10.3390/ma14133534
Google Scholar
Ziari H., Abdipour S.V.: Coupled effects of crumb rubber and zeolite on asphalt mixture performance. International Journal of Pavement Engineering, 25, 1, 2024, Article ID: 2308179, DOI: 10.1080/10298436.2024.2308179
Google Scholar
Picado-Santos L.G., Capitão S.D., Neves J.M.C.: Crumb rubber asphalt mixtures: A literature review. Construction and Building Materials, 247, 2020, Article ID: 118577, DOI: 10.1016/j.conbuildmat.2020.118577
Google Scholar
Nanjegowda V.H., Biligiri K.P.: Recyclability of rubber in asphalt roadway systems: a review. Resources, Conservation & Recycling, 155, 2020, Article ID: 104655, DOI: 10.1016/j.resconrec.2019.104655
Google Scholar
Venudharan V., Biligiri K.P.: Effect of crumb rubber gradation on asphalt binder modification. Materials and Structures, 50, 129, 2017, DOI: 10.1617/s11527-017-0994-x
Google Scholar
Jamal M., Giustozzi F.: Low-content crumb rubber modified bitumen for improving Australian local roads. Journal of Cleaner Production, 271, 2020, Article ID: 122484, DOI: 10.1016/j.jclepro.2020.122484
Google Scholar
Saberi K.F., Fakhri M., Azami A.: Evaluation of warm-mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. Journal of Cleaner Production, 165, 2017, 1125-1132, DOI: 10.1016/j.jclepro.2017.07.079
Google Scholar
Radziszewski P., Sarnowski M., Kowalski K., Król J., Ruttmar I., Zborowski A.: Właściwości asfaltów modyfikowanych gumą i mieszanek mineralno-asfaltowych. Wydawnictwa Komunikacji i Łączności, Warszawa, 2017 (in Polish)
Google Scholar
Shen J., Amirkhanian S.: The influence of crumb rubber modifier (CRM) microstructures on high-temperature properties of CRM binders. International Journal of Pavement Engineering, 6, 4, 2005, 265-271, DOI: 10.1080/10298430500373336
Google Scholar
Bocci E., Prospieri E.: Recyclability of reclaimed asphalt rubber pavement. Construction and Building Materials, 403, 2023, Article ID: 133040, DOI: 10.1016/j.conbuildmat.2023.133040
Google Scholar
EN 14243‑1:2019 Materials obtained from end of life tyres – Part 1: General definitions related to the methods for determining their dimension(s) and impurities
Google Scholar
Dong D., Jia C., Chu H.: Swelling process of rubber in asphalt. Construction and Building Materials, 29, 2012, 316-322, DOI: 10.1016/j.conbuildmat.2011.10.021
Google Scholar
Su J., Liu X., Wang Y.: Interface interaction of waste rubber-asphalt system. Buildings, 14, 6, 2024, Article ID: 1868, DOI: 10.3390/buildings14061868
Google Scholar
Radziszewski P., Sarnowski M.: Technologia nowoczesnych nawierzchni drogowych. PWN, Warszawa, 2023 (in Polish)
Google Scholar
Liu Z., Wang Z.: Development of terminal blend rubber and SBS modified asphalt: A case study. Construction and Building Materials, 334, 2022, Article ID: 127459, DOI: 10.1016/j.conbuildmat.2022.127459
Google Scholar
Riekstins A., Pettersen E., Liedtke L., Nissen K.: Crumb rubber in dense-graded asphalt by wet and dry processes. Construction and Building Materials, 292, 2021, Article ID: 123459, DOI: 10.1016/j.conbuildmat.2021.123459
Google Scholar
Sybilski D., Bańkowski W., Horodecka R., Wróbel A., Mirski K.: Metoda modyfikacji mieszanki mineralno-asfaltowej gumą z dodatkiem „tecRoad”. Drogownictwo, 66, 6, 2011, 189-193 (in Polish)
Google Scholar
Großhans D., Feige P.: Gummimodifizierung von Gussasphalt. Straße und Autobahn, 72, 10, 2021, 828-834 (in German)
Google Scholar
PN-EN 12697-6:2008 Bituminous mixtures – Test methods for hot mix asphalt – Part 6: Part 6: Determination of bulk density of bituminous specimens
Google Scholar
PN-EN 12697-20:2020 Bituminous mixtures – Test methods – Part 20: Indentation using cube or Marshall specimens
Google Scholar
PN-EN 12697-25:2005 Bituminous mixtures – Test methods for hot mix asphalt – Part 25: Cyclic compression test
Google Scholar
PN-EN 13108-20:2016 Bituminous mixtures – Material specifications – Part 20: Type Testing
Google Scholar
PN-EN 12697-26:2018 Bituminous mixtures – Test methods – Part 26: Stiffness
Google Scholar