Christensen D.W., Bonaquist R.: Use of Strength Tests for Evaluating the Rut Resistance of Asphalt Concrete. Journal of the Association of Asphalt Paving Technologists, 71, 2002, 692–711
Google Scholar
Nizamuddin S., Boom Y.J., Giustozzi F.: Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers, 13, 19, 3242, 2021, DOI: 10.3390/polym13193242
DOI: https://doi.org/10.3390/polym13193242
Google Scholar
Iwański M., Chomicz-Kowalska A., Mazurek G., Buczyński P., Cholewińska M., Iwański M.M., Maciejewski K., Ramiączek P.: Effects of the Water-Based Foaming Process on the Basic and Rheological Properties of Bitumen 70/100. Materials, 14, 11, 2803, 2021, DOI: 10.3390/ma14112803
DOI: https://doi.org/10.3390/ma14112803
Google Scholar
Zhu J., Birgisson B., Kringos N.: Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 2014, 18–38, DOI: 10.1016/j.eurpolymj.2014.02.005
DOI: https://doi.org/10.1016/j.eurpolymj.2014.02.005
Google Scholar
Read J., Whiteoak D., Hunter R.N.: The Shell Bitumen handbook, 5th edition. London, Thomas Telford Publishing, 2003
Google Scholar
Dong F., Zhao W., Zhang Y., Wei J., Fan W., Yu Y., Wang Z.: Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt. Construction and Building Materials, 62, 2014, 1–7, DOI: 10.1016/j.conbuildmat.2014.03.018
DOI: https://doi.org/10.1016/j.conbuildmat.2014.03.018
Google Scholar
Airey G.: Rheological properties of styrene butadiene styrene polymer modified road bitumens⋆. Fuel, 82, 14, 2003, 1709–1719, DOI: 10.1016/S0016-2361(03)00146-7
DOI: https://doi.org/10.1016/S0016-2361(03)00146-7
Google Scholar
Li B., Li X., Kundwa M.J., Li Z., Wei D.: Evaluation of the adhesion characteristics of material composition for polyphosphoric acid and SBS modified bitumen based on surface free energy theory. Construction and Building Materials, 266, 121022, 2021, DOI: 10.1016/j.conbuildmat.2020.121022
DOI: https://doi.org/10.1016/j.conbuildmat.2020.121022
Google Scholar
Padhan R.K., Sreeram A.: Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Construction and Building Materials, 188, 2018, 772–780, DOI: 10.1016/j.conbuildmat.2018.08.155
DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.155
Google Scholar
Airey G.D.: Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16, 8, 2002, 473–487, DOI: 10.1016/S0950-0618(02)00103-4
DOI: https://doi.org/10.1016/S0950-0618(02)00103-4
Google Scholar
Mazurek G., Šrámek J., Buczyński P.: Composition Optimisation of Selected Waste Polymer-Modified Bitumen. Materials, 15, 24, 8714, 2022, DOI: 10.3390/ma15248714
DOI: https://doi.org/10.3390/ma15248714
Google Scholar
Singh B., Kumar L., Gupta M., Chauhan G.S.: Polymer-modified bitumen of recycled LDPE and maleated bitumen. Journal of Applied Polymer Science, 127, 1, 2013, 67–78, DOI: 10.1002/app.36810
DOI: https://doi.org/10.1002/app.36810
Google Scholar
Khakimullin Y.N.: Properties of Bitumens Modified by Thermoplastic Elastomers. Mechanics of Composite Materials, 36, 5, 2000, 417–422, DOI: 10.1023/A:1026659520096
DOI: https://doi.org/10.1023/A:1026659520096
Google Scholar
Airey G.D.: Styrene butadiene styrene polymer modification of road bitumens. Journal of Materials Science, 39, 3, 2004, 951–959, DOI: 10.1023/B:JMSC.0000012927.00747.83
DOI: https://doi.org/10.1023/B:JMSC.0000012927.00747.83
Google Scholar
Giavarini C., De Filippis P., Santarelli M.L., Scarsella M.: Production of stable polypropylene-modified bitumens. Fuel, 75, 6, 1996, 681–686, DOI: 10.1016/0016-2361(95)00312-6
DOI: https://doi.org/10.1016/0016-2361(95)00312-6
Google Scholar
Pyshyev S., Gunka V., Grytsenko Y., Bratychak M.: Polymer Modified Bitumen: Review. Chemistry & Chemical Technology, 10, 4s, 2016, 631–636, DOI: 10.23939/chcht10.04si.631
DOI: https://doi.org/10.23939/chcht10.04si.631
Google Scholar
Liu P., Lu K., Li J., Wu X., Qian L., Wang M., Gao S.: Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates. Journal of Hazardous Materials, 384, 121193, 2020, DOI: 10.1016/j.jhazmat.2019.121193
DOI: https://doi.org/10.1016/j.jhazmat.2019.121193
Google Scholar
Pandey A., Islam Sk.S., G.D. Ransingchung R.N., Ravindranath S.S.: Comparing the performance of SBS and thermoplastics modified asphalt binders and asphalt mixes. Road Materials and Pavement Design, 24, sup1, 2023, 369–388, DOI: 10.1080/14680629.2023.2180999
DOI: https://doi.org/10.1080/14680629.2023.2180999
Google Scholar
Ragaert K., Delva L., Van Geem K.: Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 2017, 24–58, DOI: 10.1016/j.wasman.2017.07.044
DOI: https://doi.org/10.1016/j.wasman.2017.07.044
Google Scholar
Geyer R., Jambeck J.R., Law K.L.: Production, use, and fate of all plastics ever made. Science Advances, 3, 7, e1700782, 2017, DOI: 10.1126/sciadv.1700782
DOI: https://doi.org/10.1126/sciadv.1700782
Google Scholar
Casey D., McNally C., Gibney A., Gilchrist M.D.: Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling, 52, 10, 2008, 1167–1174, DOI: 10.1016/j.resconrec.2008.06.002
DOI: https://doi.org/10.1016/j.resconrec.2008.06.002
Google Scholar
Awad A., Al-Adday F.: Utilization of waste plastics to enhance the performance of modified hot mix asphalt. International Journal of GEOMATE, 13, 40, 2017, 132–139, DOI: 10.21660/2017.40.170603
DOI: https://doi.org/10.21660/2017.40.170603
Google Scholar
El-Naga I.A., Ragab M.: Benefits of utilization the recycle polyethylene terephthalate waste plastic materials as a modifier to asphalt mixtures. Construction and Building Materials, 219, 2019, 81–90, DOI: 10.1016/j.conbuildmat.2019.05.172
DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.172
Google Scholar
Choudhary R., Kumar A., Murkute K.: Properties of Waste Polyethylene Terephthalate (PET) Modified Asphalt Mixes: Dependence on PET Size, PET Content, and Mixing Process. Periodica Polytechnica Civil Engineering, 62, 2018, DOI: 10.3311/PPci.10797
DOI: https://doi.org/10.3311/PPci.10797
Google Scholar
Wang J., Yuan J., Xiao F., Li Z., Wang J., Xu Z.: Performance investigation and sustainability evaluation of multiple-polymer asphalt mixtures in airfield pavement. Journal of Cleaner Production, 189, 2018, 67–77, DOI: 10.1016/j.jclepro.2018.03.208
DOI: https://doi.org/10.1016/j.jclepro.2018.03.208
Google Scholar
EN 1426:2015 Bitumen and bituminous binders – Determination of needle penetration
Google Scholar
EN 1427:2015 Bitumen and bituminous binders – Determination of the softening point – Ring and Ball method
Google Scholar
EN 12593:2015 Bitumen and bituminous binders – determination of the Fraass breaking point
Google Scholar
ASTM D4402:2015 Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer
Google Scholar
Plackett R.L., Burman J.P.: The Design of Optimum Multifactorial Experriments. Biometrika, 33, 4, 1946, 305–325, DOI: 10.1093/biomet/33.4.305
DOI: https://doi.org/10.1093/biomet/33.4.305
Google Scholar
Mazurek G., Podsiadło M.: Optimisation of Polymer Addition Using the Plackett-Burman Experiment Plan. IOP Conference Series: Materials Science and Engineering, 1203, 022003, 2021, DOI: 10.1088/1757-899x/1203/2/022003
DOI: https://doi.org/10.1088/1757-899X/1203/2/022003
Google Scholar
Modarres A., Hamedi H.: Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Materials & Design, 61, 2014, 8–15, DOI: 10.1016/j.matdes.2014.04.046
DOI: https://doi.org/10.1016/j.matdes.2014.04.046
Google Scholar
Brasileiro L., Moreno-Navarro F., Tauste-Martínez R., Matos J., Rubio-Gámez M.C.: Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability, 11, 3, 646, 2019, DOI: 10.3390/su11030646
DOI: https://doi.org/10.3390/su11030646
Google Scholar
García-Morales M., Partal P., Navarro F.J., Martínez-Boza F., Mackley M.R., Gallegos C.: The rheology of recycled EVA/LDPE modified bitumen. Rheologica Acta, 43, 5, 2004, 482–490, DOI: 10.1007/s00397-004-0385-4
DOI: https://doi.org/10.1007/s00397-004-0385-4
Google Scholar
McShane S.L., Von Glinow M.A., Sharma R.R.: Organizational behavior: emerging knowledge and pracitice for the real world. New Delhi, Tata McGraw Hill Education, 2011
Google Scholar
Hastie T., Tibshirani R., Friedman. J.H.: The elements of statistical learning: data mining, inference, and prediction. Second Edition. New York, Springer, 2009
DOI: https://doi.org/10.1007/978-0-387-84858-7
Google Scholar
AASHTO TP 70 Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)
Google Scholar
EN 13632 Bitumen and bituminous binders – Visualisation of polymer dispersion in polymer modified bitumen
Google Scholar
Schneider C.A., Rasband W.S., Eliceiri K.W.: NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 7, 2012, 671–675, DOI: 10.1038/nmeth.2089
DOI: https://doi.org/10.1038/nmeth.2089
Google Scholar
Ralph B., Kurzydłowski K.J.: The philosophy of microscopic quantification. Materials Characterization, 38, 4–5, 1997, 217–227, DOI: 10.1016/S1044-5803(97)00051-X
DOI: https://doi.org/10.1016/S1044-5803(97)00051-X
Google Scholar
Hamid A., Baaj H., El-Hakim M.: Predicting the Recovery and Nonrecoverable Compliance Behaviour of Asphalt Binders Using Artificial Neural Networks. Processes, 10, 12, 2633, 2022, DOI: 10.3390/pr10122633
DOI: https://doi.org/10.3390/pr10122633
Google Scholar
AASHTO M 332-2022 Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test
Google Scholar
Lander J.P., Włodarz M.: R dla każdego: zaawansowane analizy i grafika statystyczna. APN Promise, Warszawa, 2018, Warszawa, 2018
Google Scholar