Bodin D., Soenen H., Roche C.: Temperature effects in binder fatigue and healing tests. Conference: E&E Conference in Vienna 2004
Google Scholar
Budziński B., Mieczkowski P., Słowik M., Mielczarek M., Bilski M., Fornalczyk S.: Assessment of the low-temperature performance of asphalt mixtures for bridge pavement. Road Materials Pavement Design, 24, Sup. 1: EATA 2023 Gdansk, 2023, DOI: 10.1080/14680629.2023.2181002
DOI: https://doi.org/10.1080/14680629.2023.2181002
Google Scholar
Kandhal P.S., Chakraborty S.: Effect of Asphalt Film Thickness on Short – and Long-Term Aging of Asphalt Paving Mixtures. Transportation Research Record: Journal of the Transportation Research Board, 1535, 1, 1996, DOI: 10.1177/0361198196153500111
DOI: https://doi.org/10.1177/0361198196153500111
Google Scholar
Kowalski K., Król J., Bańkowski W., Radziszewski P., Sarnowski M.: Thermal and Fatigue Evaluation of Asphalt Mixtures Containing RAP Treated with a Bio-Agent. Applied Sciences, 7, 3, 216, DOI: 10.3390/app7030216
DOI: https://doi.org/10.3390/app7030216
Google Scholar
Mannan U., Islam M., Tarefder R.: Fatigue Behavior of Asphalt Containing Reclaimed Asphalt Pavements. TRB Annual Meeting 2015
Google Scholar
Miró R., Martínez A.H., Pérez-Jiménez F.E., Botella R., Álvarez A.: Effect of filler nature and content on the bituminous mastic behaviour under cyclic loads. Construction and Building Materials, 132, 2017, 33–42, DOI: 10.1016/j.conbuildmat.2016.11.114
DOI: https://doi.org/10.1016/j.conbuildmat.2016.11.114
Google Scholar
Piłat J., Radziszewski P.: Nawierzchnie asfaltowe. Warszawa, WKŁ, 2007
Google Scholar
Read J., Whiteoak D., Hunter R.N.: The Shell Bitumen handbook – 5th edition. London, Thomas Telford, 2003
Google Scholar
Stefańczyk B., Mieczkowski P.: Mieszanki mineralno-asfaltowe: wykonawstwo i badania. Warszawa, WKŁ, 2009
Google Scholar
Petersen J.C.: A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Serial: Transportation Research Circular No E-C140. Publication Date: 2009–10, https://trid.trb.org/view/902386
Google Scholar
Tauste R., Moreno-Navarro F., Sol-Sánchez M., Rubio-Gámez M.C.: Understanding the bitumen ageing phenomenon: A review. Construction and Building Materials, 192, 2018, 593–609, DOI: 10.1016/j.conbuildmat.2018.10.169
DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.169
Google Scholar
Solanki P., Zaman M., Adje D., Hossain Z.: Effect of Recycled Asphalt Pavement on Thermal Cracking Resistance of Hot-Mix Asphalt. International Journal of Geomechanics, 15, 5,2014, DOI: 10.1061/(ASCE)GM.1943-5622.0000398
DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000398
Google Scholar
Abouelsaad A., White G.: The Combined Effect of Ultraviolet Irradiation and Temperature on Hot Mix Asphalt Mixture Aging. Sustainability, 14, 10, 5942, 2022, DOI: 10.3390/su14105942
DOI: https://doi.org/10.3390/su14105942
Google Scholar
Bocci M., Cerni G.: The ultraviolet radiation in short-term and long-term aging of bitumen. Proceedings of Eurasphalt & Eurobitume Congress, Barcelona, Spain, 20–22 September 2000. Book 1 – Session 1, 49–58, https://trid.trb.org/view/673920
Google Scholar
Feng Z.-G, Yu J.-Y., Zhang H.-L., Kuang D.-L., Xue L.-H.: Effect of ultraviolet aging on rheology, chemistry and morphology of ultraviolet absorber modified bitumen. Materials and Structures, 46, 7, 2013, 1123–1132, DOI: 10.1617/s11527-012-9958-3
DOI: https://doi.org/10.1617/s11527-012-9958-3
Google Scholar
Hu J. i in.: The Effect of Ultraviolet Radiation on Bitumen Aging Depth. Materials, 11, 5, 2018, 747–762, DOI: 10.3390/ma11050747
DOI: https://doi.org/10.3390/ma11050747
Google Scholar
Polo-Mendoza R. i in.: Ultraviolet ageing of bituminous materials: A comprehensive literature review from 2011 to 2022. Construction and Building Materials, 350, 2022, 1–32, DOI: 10.1016/j.conbuildmat.2022.128889
DOI: https://doi.org/10.1016/j.conbuildmat.2022.128889
Google Scholar
Liu M., Chaffin J.M., Davison R.R., Glover C.J., Bullin J.A.: Changes in Corbett Fraction Composition During Oxidation of Asphalt Fractions. Transportation Research Record: Journal of the Transportation Research Board, 1638, 1, 1998, 40–46, DOI: 10.3141/1638-05
DOI: https://doi.org/10.3141/1638-05
Google Scholar
Berkowitz M., Filipovich M., Baldi A., Hesp S.A.M., Aguiar-Moya J.P., Lorı́a-Salazar L.G.: Oxidative and Thermoreversible Aging Effects on Performance-Based Rheological Properties of Six Latin American Asphalt Binders. Energy Fuels, 33, 4, 2019, 2604-2613, DOI: 10.1021/acs.energyfuels.8b03265
DOI: https://doi.org/10.1021/acs.energyfuels.8b03265
Google Scholar
Bocci E., Prosperi E., Mair V., Bocci M.: Ageing and Cooling of Hot-Mix-Asphalt during Hauling and Paving-A Laboratory and Site Study. Sustainability, 12, 8612, 2020, DOI: 10.3390/su12208612
DOI: https://doi.org/10.3390/su12208612
Google Scholar
Read J., Whiteoak D.: The Shell Bitumen Handbook – 5th Edition. London, United Kingdom, Thomas Telford Limited, 2003, 5, https://trid.trb.org/view/741018
Google Scholar
Yut I., Zofka A.: Correlation between rheology and chemical composition of aged polymer-modified asphalts. Construction and Building Materials, 62, 2014, 109–117, DOI: 10.1016/j.conbuildmat.2014.03.043
DOI: https://doi.org/10.1016/j.conbuildmat.2014.03.043
Google Scholar
Kamali Z., Karimi M.M., Ahmadi Dehaghi E., Jahanbakhsh H.: Using electromagnetic radiation for producing reclaimed asphalt pavement (RAP) Mixtures: Mechanical, induced heating, and sustainability assessments. Construction and Building Materials, 321, 2022, 126315, DOI: 10.1016/j.conbuildmat.2022.126315
DOI: https://doi.org/10.1016/j.conbuildmat.2022.126315
Google Scholar
van de Ven M.F.C., Molenaar A.A.A., Mengiste G.. Development of a Lab Production Method with Recycled Asphalt Pavement in a Double Barrel Drum Mixer. in: The 11th International Conference on Asphalt Pavements, Nagoya, Japan, 2010, 1–9
Google Scholar
Sorociak W., Grzesik B., Bzówka J., Mieczkowski P.: Asphalt Concrete Produced from Rejuvenated Reclaimed Asphalt Pavement (RAP). Archives Civil Engineering, 2, 2020, DOI: 10.24425/ACE.2020.131812
Google Scholar
Zaumanis M., Mallick R.B.: Review of very high-content reclaimed asphalt use in plant-produced pavements: State of the art. International Journal of Pavement Engineering, 16, 1, 2015, 39–55, DOI: 10.1080/10298436.2014.893331
DOI: https://doi.org/10.1080/10298436.2014.893331
Google Scholar
Sharma B.K. i in.: Modeling the performance properties of RAS and RAP blended asphalt mixes using chemical compositional information. Tech Report FHWA¿ICT¿17¿001, 2017, https://rosap.ntl.bts.gov/view/dot/32024
Google Scholar
Haddadi S.S., Coleri E., Sreedhar S.: Strategies to improve performance of reclaimed asphalt pavement-recycled asphalt shingle mixtures. International Journal of Pavement Engineering, 22, 2, 2019, 1–12, DOI: 10.1080/10298436.2019.1593411
DOI: https://doi.org/10.1080/10298436.2019.1593411
Google Scholar
Ahmed R.B., Hossain K.: Waste cooking oil as an asphalt rejuvenator: A state-of-the-art review. Construction and Building Materials, 230, 116985, 2020, DOI: 10.1016/j.conbuildmat.2019.116985
DOI: https://doi.org/10.1016/j.conbuildmat.2019.116985
Google Scholar
Baghaee Moghaddam T., Baaj H.: The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review. Construction and Building Materials, 114, 2016, DOI: 10.1016/j.conbuildmat.2016.04.015
DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.015
Google Scholar
Jiang Y.J., Xue H., Xue H., Chen Z.D.: Preventing cracks of asphalt pavement based on pre-cutting crack and paving geotextile at semi-rigid type base. Journal of Chang’an University (Natural Science Edition), 26, 2, 2006, 6–9
Google Scholar
Zaumanis M., Mallick R.B., Poulikakos L., Frank R.: Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Construction and Building Materials, 71, 2014, 538–550, DOI: 10.1016/j.conbuildmat.2014.08.073
DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.073
Google Scholar
Zaumanis M., Mallick R.B., Frank R.: Determining optimum rejuvenator dose for asphalt recycling based on Superpave performance grade specifications. Construction and Building Materials, 69, 2014, 159–166, DOI: 10.1016/j.conbuildmat.2014.07.035
DOI: https://doi.org/10.1016/j.conbuildmat.2014.07.035
Google Scholar
De Bock L., Piérard N., Vansteenkiste S., Vanelstraete A.: Categorisation and analysis of rejuvenators for asphalt recycling. Report number: Dossier 21, 2020
Google Scholar
Oliver J.W.H.: Diffusion of oils in asphalts. in: ARR Report, no. 9. Vermont South, Vic.: Australian Road Research Board, 1975
Google Scholar
Karlsson R., Isacsson U.: Investigations on bitumen rejuvenator diffusion and structural stability. Asphalt Paving Technology, 72, 2003, 463–501
Google Scholar
Loise V., Caputo P., Porto M., Calandra P., Angelico R., Oliviero C.: A Review on Bitumen Rejuvenation: Mechanisms. Materials, Methods and Perspectives. Applied Sciences, 9, 20, 4316, 2019, DOI: 10.3390/app9204316
DOI: https://doi.org/10.3390/app9204316
Google Scholar
Porto M., Caputo P., Loise V., Eskandarsefat S., Teltayev B., Oliviero Rossi C.: Bitumen and Bitumen Modification: A Review on Latest Advances. Applied Sciences, 9, 4, 742, 2019, DOI: 10.3390/app9040742
DOI: https://doi.org/10.3390/app9040742
Google Scholar
Fernández-Gómez W.D., Rondón Quintana H., Reyes-Lizcano F.: A review of asphalt and asphalt mixture aging. Ingeniería e Investigación, 33, 1, 2013, 5–12, DOI: 10.15446/ing.investig.v33n1.37659
DOI: https://doi.org/10.15446/ing.investig.v33n1.37659
Google Scholar
Lesueur D.: The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145, 1, 2009, 42–82, DOI: 10.1016/j.cis.2008.08.011
DOI: https://doi.org/10.1016/j.cis.2008.08.011
Google Scholar
Dony A., Colin J., Bruneau D., Drouadaine I., Navaro J.: Reclaimed asphalt concretes with high recycling rates: Changes in reclaimed binder properties according to rejuvenating agent. Construction and Building Materials, 41, 2013, 175–181, DOI: 10.1016/j.conbuildmat.2012.11.031
DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.031
Google Scholar
Radenberg M., Boetcher S., Sedaghat N.: Effect and efficiency of rejuvenators on aged asphalt binder – German experiences. in: 6th Eurasphalt & Eurobitume Congress, 1–3 June 2016, Prague, Czech Republic, DOI: 10.14311/EE.2016.051
DOI: https://doi.org/10.14311/EE.2016.051
Google Scholar
Ji J. i in.: Effectiveness of Vegetable Oils as Rejuvenators for Aged Asphalt Binders. Journal of Materials in Civil Engineering, 29, 3, 2017, DOI: 10.1061/(ASCE)MT.1943-5533.0001769
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001769
Google Scholar
Gong M., Yang J., Zhang J., Zhu H., Tong T.: Physical-chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Construction and Building Materials, 105, 2016, 35–45, DOI: 10.1016/j.conbuildmat.2015.12.025
DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.025
Google Scholar
Grzesik B., Bzówka J., Sorociak W., Mieczkowski P.: Asphalt Concrete Produced from Rejuvenated Reclaimed Asphalt Pavement (RAP). Archives of Civil Engineering, 66, 2, 2020, 321–337, DOI: 10.24425/ace.2020.131812
DOI: https://doi.org/10.24425/ace.2020.131812
Google Scholar
https://www.products.pcc.eu/pl/numer-cas/39464-69-2
Google Scholar
PN-EN 1097-6:2022-07 Badania mechanicznych i fizycznych właściwości kruszyw – Część 6: Oznaczanie gęstości ziarn i nasiąkliwości
Google Scholar
PN-EN 1097-7:2023-04 Badania mechanicznych i fizycznych właściwości kruszyw – Część 7: Oznaczanie gęstości wypełniacza – Metoda piknometryczna
Google Scholar
WT-2 2014 – część I. Mieszanki mineralno-asfaltowe. Wymagania Techniczne. Warszawa, Generalna Dyrekcja Dróg Krajowych i Autostrad, 2014
Google Scholar
PN-EN 12697-6:2020-07 Mieszanki mineralno-asfaltowe – Metody badań – Część 6: Oznaczanie gęstości objętościowej próbek mieszanki mineralno-asfaltowej
Google Scholar
PN-EN 12697-5:2019-01 Mieszanki mineralno-asfaltowe – Metody badań – Część 5: Oznaczanie gęstości
Google Scholar
PN-EN 12697-8:2019-01 Mieszanki mineralno-asfaltowe – Metody badań – Część 8: Oznaczanie zawartości wolnej przestrzeni próbek mineralno-asfaltowych
Google Scholar
PN-EN 12697-12:2018-08 Mieszanki mineralno-asfaltowe – Metody badań – Część 12: Określanie wrażliwości na wodę próbek mineralno-asfaltowych
Google Scholar
PN-EN 12697-22:2020-07 Mieszanki mineralno-asfaltowe – Metody badań – Część 22: Koleinowanie
Google Scholar
Howard I.L., Doyle J.D.: Durability Indexes via Cantabro Testing for Unaged, Laboratory-Conditioned, and One-Year Outdoor-Aged Asphalt Concrete. Transportation Research Board, 94th Annual Meeting, Washington DC, United States, 11-15.01.2015, https://trid.trb.org/view/1337071
Google Scholar
Newcomb D. i in.: Short-Term Laboratory Conditioning of Asphalt Mixtures. NCHRP Report 815, 2015
DOI: https://doi.org/10.17226/22077
Google Scholar
Islam M., Hossain I., Tarefder R.: A study of asphalt aging using Indirect Tensile Strength test. Construction and Building Materials, 95, 2015, 218–223, DOI: 10.1016/j.conbuildmat.2015.07.159
DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.159
Google Scholar
Bonaquist R.F.: Mix design practices for warm mix asphalt. NCHRP Report no. 691. Washington, D.C., Transportation Research Board, 2011
DOI: https://doi.org/10.17226/14488
Google Scholar
Moraes R., Yin F., Chen C., Andriescu A., Mensching D.J., Tran N.: Evaluation of long-term oven aging protocols on field cracking performance of asphalt binders containing reclaimed asphaltic materials (RAP/RAS). Road Materials and Pavement Design, 24, sup. 1, 2023, 437–450, DOI: 10.1080/14680629.2023.2181004
DOI: https://doi.org/10.1080/14680629.2023.2181004
Google Scholar
PN-EN 1426:2015-08 Asfalty i lepiszcza asfaltowe – Oznaczanie penetracji igłą
Google Scholar
PN-EN 1427:2015-08 Asfalty i lepiszcza asfaltowe – Oznaczanie temperatury mięknienia – Metoda Pierścień i Kula
Google Scholar
PN-EN 12591:2010 Asfalty i lepiszcza asfaltowe – Wymagania dla asfaltów drogowych
Google Scholar
AASHTO T 315 – Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)
Google Scholar
Ranny M.: Thin-Layer Chromatography with Flame Ionization Detection. Dordrecht , Boston , Norwell, MA, U.S.A, Springer, 1987
DOI: https://doi.org/10.1007/978-94-009-3705-5
Google Scholar
Porot L., Mouillet V., Margaritis A., Haghshenas H.F., Elwardany M., Apostolidis P.: Fourier-transform infrared analysis and interpretation for bituminous binders. Road Materials and Pavement Design, 24, 132, 2022, DOI: 10.1080/14680629.2021.2020681
DOI: https://doi.org/10.1080/14680629.2021.2020681
Google Scholar
PN-EN 12697-26 Mieszanki mineralno-asfaltowe – Metody badań – Część 26: Sztywność”
Google Scholar
PN-EN 12697-30:2019-01 Mieszanki mineralno-asfaltowe – Metody badań – Część 30: Przygotowanie próbek zagęszczonych przez ubijanie
Google Scholar
PN-EN 12697-24 Mieszanki mineralno-asfaltowe – Metody badań mieszanek mineralno-asfaltowych na gorąco – Część 24: Odporność na zmęczenie
Google Scholar
Pszczoła M., Szydłowski C., Jaczewski M.: Influence of cooling rate and additives on low-temperature properties of asphalt mixtures in the TSRST. Construction Building Materials, 204, 2019, 399–409, DOI: 10.1016/j.conbuildmat.2019.01.148
DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.148
Google Scholar
Teltayev B., Radovskiy B.: Predicting thermal cracking of asphalt pavements from bitumen and mix properties. Road Materials and Pavement Design, 19, 8, 2018, 1832–1847, DOI: 10.1080/14680629.2017.1350598
DOI: https://doi.org/10.1080/14680629.2017.1350598
Google Scholar