Judycki J.: Application of the new viscoelastic method of thermal stress calculation to the analysis of low-temperature cracking of ashpalt layers. Roads and Bridges – Drogi i Mosty, 19, 1, 2020, 27-49, DOI: 10.7409/rabdim.020.002
DOI: https://doi.org/10.7409/rabdim.020.002
Google Scholar
Vinson T.S., Janoo V.C., Haas R.C.G.: Low temperature and thermal fatigue cracking. Summary report SR-OSU-A-003A-89-1 of Strategic Highway Research Program. National Research Council, Washington, D.C., 1989
Google Scholar
Behnia B., Buttlar W., Reis H.: Evaluation of low-temperature cracking performance of asphalt pavements using acoustic emission: A review. Applied Sciences, 8, 2, 2018, ID article: 306, DOI: 10.3390/app8020306
DOI: https://doi.org/10.3390/app8020306
Google Scholar
Gajewski M., Bańkowski W., Gajewska B.: Determination of Thermal Stresses in Asphalt Layers as a Problem of Thermo-Elasticity and Unsteady Heat Flow. In: Di Benedetto H., Baaj H., Chailleux E., Tebaldi G., Sauzéat C., Mangiafico S. (Eds.): Proceedings of the RILEM International Symposium on Bituminous Materials. Springer International Publishing, Cham, RILEM Bookseries, 27, 2022, 545-551
DOI: https://doi.org/10.1007/978-3-030-46455-4_69
Google Scholar
Lytton R.L.: Design of asphalt pavements for thermal fatigue cracking. The Institute: College Station, Tex, 1983
Google Scholar
Yee P., Aida B., Hesp S., Marks P., Tam K.: Analysis of premature low-temperature cracking in three Ontario, Canada, pavements. Transportation Research Record, 1962, 1, 2006, 44-51, DOI: 10.3141/1962-06
DOI: https://doi.org/10.1177/0361198106196200106
Google Scholar
Zaumanis M., Valters A.: Comparison of two low-temperature cracking tests for use in performance-based asphalt mixture design. International Journal of Pavement Engineering, 21, 12, 2020, 1461-1469, DOI: 10.1080/10298436.2018.1549323
DOI: https://doi.org/10.1080/10298436.2018.1549323
Google Scholar
Judycki J., Jaczewski M., Ryś D., Pszczoła M., Jaskuła P., Glinicki A.: Field Investigation of low-temperature cracking and stiffness moduli on selected roads with conventional and high modulus asphalt concrete. IOP Conference Series: Materials Science and Engineering, 236, 2017, ID article: 012002, DOI: 10.1088/1757-899X/236/1/012002
DOI: https://doi.org/10.1088/1757-899X/236/1/012002
Google Scholar
Gao H., Xu B.: Research on climatic influencing factors of low temperature cracking index of asphalt pavement in cold area. IOP Conference Series: Earth and Environmental Science, 651, 4, 2021, ID article: 042032, DOI: 10.1088/1755-1315/651/4/042032
DOI: https://doi.org/10.1088/1755-1315/651/4/042032
Google Scholar
Bouldin M.G., Dongre R., Row G.M., Sharrock M.J.,
Google Scholar
Anderson D.A.: Predicting thermal cracking of pavements from binder properties: Theoretical basis and field validation. Proceedings of the Association of Asphalt Paving Technologists, 69, 2000, 455-496
Google Scholar
Li X.J., Marasteanu M.O.: Using semi circular bending test to evaluate low temperature fracture resistance for asphalt concrete. Experimental Mechanics, 50, 7, 2010, 867-876, DOI: 10.1007/s11340-009-9303-0
DOI: https://doi.org/10.1007/s11340-009-9303-0
Google Scholar
Epps A.: Design and analysis system for thermal cracking in asphalt concrete. Journal of Transportation Engineering, 126, 4, 2000, 300-307,
Google Scholar
DOI: 10.1061/(ASCE)0733-947X(2000)126:4(300)
DOI: https://doi.org/10.1061/(ASCE)0733-947X(2000)126:4(300)
Google Scholar
Shahin M.Y., McCullough B.F.: Prediction of low temperature and thermal-fatigue cracking in flexible pavements. Research Report No. 123-14, The Texas Highway Department and Texas Transportation Institute, 1972
Google Scholar
Jackson N.M., Vinson T.S.: Analysis of thermal fatigue distress of asphalt concrete pavements. Transportation Research Record, 1545, 1, 1996, 43-49, DOI: 10.1177/0361198196154500106
DOI: https://doi.org/10.1177/0361198196154500106
Google Scholar
Raffaniello A., Bauer, M., Safiuddin Md., El-Hakim M.: Traffic and climate impacts on rutting and thermal cracking in flexible and composite pavements. Infrastructures, 7, 8, 2022, ID article: 100, DOI: 10.3390/infrastructures7080100
DOI: https://doi.org/10.3390/infrastructures7080100
Google Scholar
Marasteanu M.O., Li X., Clyne T.R., Voller V., Timm D.H., Newcomb D.: Low temperature cracking of asphalt concrete pavement. Strategic Highway Research Program SHRP-A-400, Final Report, Minnesota Department of Transportation, 2004
Google Scholar
Rahbar-Rastegar R., Dave E.V., Daniel J.S.: Fatigue and thermal cracking analysis of asphalt mixtures using continuum-damage and cohesive-zone models. Journal of Transportation Engineering, Part B: Pavements, 144, 4, 2018, ID article: 04018040, DOI: 10.1061/JPEODX.0000066
DOI: https://doi.org/10.1061/JPEODX.0000066
Google Scholar
Anderson R., King G., Hanson, D., Blankenship P.: Evaluation of the relationship between asphalt binder properties and non-load related cracking. Journal of the Association of Asphalt Paving Technologists, 80, 2011, 615-664
Google Scholar
Szwed A., Kamińska I.: Mitigation of low-temperature cracking in asphalt pavement by selection of material stiffness. Procedia Engineering, 111, 2015, 748-755, DOI: 10.1016/j.proeng.2015.07.141
DOI: https://doi.org/10.1016/j.proeng.2015.07.141
Google Scholar
Pirmohammad S., Ayatollahi M.R.: Asphalt concrete resistance against fracture at low temperatures under different modes of loading. Cold Regions Science and Technology, 110, 2015, 149-159, DOI: 10.1016/j.coldregions.2014.11.001
DOI: https://doi.org/10.1016/j.coldregions.2014.11.001
Google Scholar
Xu Y., Zheng C., Feng Y., Guo X.: Low-temperature cohesive and adhesive strength testing of contact surface between bitumen and mineral aggregates by image analysis. Construction and Building Materials, 183, 2018, 95-101, DOI: 10.1016/j.conbuildmat.2018.06.169
DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.169
Google Scholar
Zhang W.: Evaluation of field transverse cracking of asphalt pavements. Washington State University, 2015,
Google Scholar
https://rex.libraries.wsu.edu/esploro/outputs/doctoral/Evaluation-of-Field-Transverse-Cracking-of/99900581837801842 (available online: 10 October 2022)
Google Scholar
Jung D., Vinson T.S.: Thermal Stress restrained specimen test to evaluate low-temperature cracking of asphalt-aggregate mixtures. Transportation Research Record, 1417, 1993, 12-20
Google Scholar
Büchner J., Wistuba M.: Analysis of low temperature relaxation properties of asphalt binder and asphalt mastic using a dynamic shear rheometer. Proceedings of the Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, 2, CRC Press, London, 2022, 508-516
DOI: https://doi.org/10.1201/9781003222897-47
Google Scholar
Isacsson U., Zeng H.: Cracking of asphalt at low temperature as related to bitumen rheology. Journal of Materials Science, 33, 8, 1998, 2165-2170, DOI: 10.1023/A:1004383506240
DOI: https://doi.org/10.1023/A:1004383506240
Google Scholar
Pszczoła M., Judycki J.: Evaluation of thermal stresses in asphalt layers incomparison with TSRST test results. Proccedings of The 7th RILEM International Conference on Cracking in Pavements, RILEM Bookseries, 4, 2012, 41-49, DOI: 10.1007/978-94-007-4566-7_5
DOI: https://doi.org/10.1007/978-94-007-4566-7_5
Google Scholar
Jaczewski M., Dolżycki B., Alenowicz J., Jaskuła P.: Impact of reclaimed asphalt pavement (RAP) on low-temperature properties of asphalt concrete. Roads and Bridges – Drogi i Mosty, 18, 4, 2019, 303-315, DOI: 10.7409/rabdim.019.020
DOI: https://doi.org/10.7409/rabdim.019.020
Google Scholar
Judycki J.: Twardnienie fizyczne asfaltów i mieszanek mineralno-asfaltowych oraz jego wpływ na spękania niskotemperaturowe. Drogownictwo, 73, 12, 2013, 368-373
Google Scholar
Soenen H., Ekblad J., Lu X., Redelius P.: Isothermal hardening in bitumen and in asphalt mix. Proceedings of The 3rd Eurasphalt and Eurobitume Congress Held, Vienna, 2004, 2, 2004, 1364-1375
Google Scholar
Isacsson U., Zeng H.: Relationships between bitumen chemistry and low temperature behaviour of asphalt. Construction and Building Materials, 11, 2, 1997, 83-91, DOI: 10.1016/S0950-0618(97)00008-1
DOI: https://doi.org/10.1016/S0950-0618(97)00008-1
Google Scholar
Budziński B., Mieczkowski P.: Use of tensile creep test (TCT) for evaluation of low temperature performance of bituminous mixtures used for bridge pavement. Archives of Civil Engineering, 68, 2, 2022, 679-696, DOI: 10.24425/ACE.2022.140666
Google Scholar
Riccardi C., Wang D., Wistuba M.P., Walther A.: Effects of polyacrylonitrile fibres and high content of RAP on mechanical properties of asphalt mixtures in binder and base layers. Road Materials and Pavement Design, 24, 9, 2023, 2133–2155, DOI: 10.1080/14680629.2022.2117072
DOI: https://doi.org/10.1080/14680629.2022.2117072
Google Scholar
Teltayev B.B., Rossi C.O., Izmailova G.G., Amirbayev E.D., Elshibayev A.O.: Evaluating the effect of asphalt binder modification on the low-temperature cracking resistance of hot mix asphalt. Case Studies in Construction Materials, 11, 2019, ID article: e00238, DOI: 10.1016/j.cscm.2019.e00238
DOI: https://doi.org/10.1016/j.cscm.2019.e00238
Google Scholar
Tan Y., Zhang L., Xu H.: Evaluation of low-temperature performance of asphalt paving mixtures. Cold Regions Science and Technology, 70, 2012, 107-112, DOI: 10.1016/j.coldregions.2011.08.006
DOI: https://doi.org/10.1016/j.coldregions.2011.08.006
Google Scholar
Li G.Q., Li Y.Q., Metcalf J.B., Pang S.S.: Elastic modulus prediction of asphalt concrete. Journal of Materials in Civil Engineering, 11, 3, 1999, 236-241, DOI: 10.1061/(ASCE)0899-1561(1999)11:3(236)
DOI: https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(236)
Google Scholar
Vamegh M., Ameri M., Chavoshian Naeni S.F.: Performance evaluation of fatigue resistance of asphalt mixtures modified by SBR/PP polymer blends and SBS. Construction and Building Materials, 209, 2019, 202-214, DOI: 10.1016/j.conbuildmat.2019.03.111
DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.111
Google Scholar
Khodaii A., Mehrara A.: Evaluation of permanent deformation of unmodified and SBS modified asphalt mixtures using dynamic creep test. Construction and Building Materials, 23, 7, 2009, 2586-2592, DOI: 10.1016/j.conbuildmat.2009.02.015
DOI: https://doi.org/10.1016/j.conbuildmat.2009.02.015
Google Scholar
Zhu J., Birgisson B., Kringos N.: Polymer modification of bitumen: advances and challenges. European Polymer Journal, 54, 2014, 18-38, DOI:
DOI: https://doi.org/10.1016/j.eurpolymj.2014.02.005
Google Scholar
1016/j.eurpolymj.2014.02.005
DOI: https://doi.org/10.1088/1475-7516/2014/02/005
Google Scholar
Isacsson U., Zeng H.: Low-temperature cracking of polymer-modified asphalt. Materials and Structures, 31, 1998, 58-63, DOI: 10.1007/BF02486415
DOI: https://doi.org/10.1007/BF02486415
Google Scholar
Roy S.D., Hesp S.A.M.: Low-temperature binder specification development: Thermal Stress restrained specimen testing of asphalt binders and mixtures. Journal of the Transportation Research Board, 1766, 1, 2001, 7-14, DOI: 10.3141/1766-02
DOI: https://doi.org/10.3141/1766-02
Google Scholar
Błażejowski K., Wójcik-Wiśniewska M.: Wytrzymałość zmęczeniowa i odporność na pękanie mieszanek mineralno-asfaltowych z różnymi asfaltami. IV Śląskie Forum Drogownictwa, Chorzów, 2016
Google Scholar
Tabor Z.: Przykłady zastosowania asfaltów wysokomodyfikowanych podczas remontów dróg wojewódzkich. IV Śląskie Forum Drogownictwa, Chorzów, 2016
Google Scholar
Du Z., Jiang C., Yuan J., Xiao F., Wang J.: Low temperature performance characteristics of polyethylene modified asphalts – a review. Construction and Building Materials, 264, 2020, ID article: 120704, DOI: 10.1016/j.conbuildmat.2020.120704
DOI: https://doi.org/10.1016/j.conbuildmat.2020.120704
Google Scholar
Rys D., Jaczewski M., Pszczoła M., Jaskuła P., Bańkowski W.: Effect of bitumen characteristics obtained according to EN and Superpave specifications on asphalt mixture performance in low-temperature laboratory tests. Construction and Building Materials, 231, 2020, ID article: 117156, DOI: 10.1016/j.conbuildmat.2019.117156
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117156
Google Scholar
Becker Y., Méndez M., Rodríguez Y.: Polymer modified asphalt. Vision Tecnologica, 9, 2000, 39-50,
Google Scholar
https://api.semanticscholar.org/CorpusID:51775580 (available on 16.09.2024)
Google Scholar
Pszczoła M., Szydłowski C., Jaczewski M.: Influence of cooling rate and additives on low-temperature properties of asphalt mixtures in the TSRST. Construction and Building Materials, 204, 2019, 399-409, DOI: 10.1016/j.conbuildmat.2019.01.148
DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.148
Google Scholar
Judycki J.; Pszczoła M.; Jaskula P.: Wpływ rodzaju asfaltu na odporność cienkich warstw ścieralnych na spękania niskotemperaturowe. II Międzynarodowa Konferencja Naukowo-Techniczna „Nowoczesne Technologie w Budownictwie Drogowym”; Poznań, 2001; 132-141
Google Scholar
Lu X., Isacsson U.: Effect of binder rheology on the low-temperature cracking of asphalt mixtures. Road Materials and Pavement Design, 2, 1, 2001, 29-47, DOI: 10.1080/14680629.2001.9689893
DOI: https://doi.org/10.1080/14680629.2001.9689893
Google Scholar
Lu X.; Isacsson U., Ekblad J.: Influence of polymer modification on low temperature behaviour of bituminous binders and mixtures. Materials and Structures, 36, 2003, 652-656, DOI: 10.1007/BF02479497
DOI: https://doi.org/10.1007/BF02479497
Google Scholar
Aliha M.R.M., Fazaeli H., Aghajani S., Moghadas Nejad F.: Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures. Construction and Building Materials, 95, 2015, 545-555, DOI: 10.1016/j.conbuildmat.2015.07.165
DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.165
Google Scholar
Budziński B., Ratajczak M., Majer S., Wilmański A.: Influence of bitumen grade and air voids on low-temperature cracking of asphalt. Case Studies in Construction Materials, 19, 2023, ID article: e02255, DOI: 10.1016/j.cscm.2023.e02255
DOI: https://doi.org/10.1016/j.cscm.2023.e02255
Google Scholar
WT-2 Część I: Mieszanki Mineralno-Asfaltowe, Wymagania Techniczne. Generalna Dyrekcja Dróg Krajowych i Autostrad, Warszawa, 2014
Google Scholar
Ranny M.: Thin-layer chromatography with flame ionization detection. D. Reidel Publishing Company, Dordrecht, Holland, 2013
Google Scholar
Hesp S., Terlouw T., Vonk W.: Low Temperature performance of SBS-modified asphalt mixes. The Conference of Association of Asphalt Paving Technologists Proccedings, Reno, NV, United States, 69, 2000, 540-573
Google Scholar
Liu H., Chen Z., Wang Y., Zhang Z., Hao P.: Effect of poly phosphoric acid (PPA) on creep response of base and polymer modified asphalt binders/mixtures at intermediate-low temperature. Construction and Building Materials, 159, 2018, 329-337, DOI: 10.1016/j.conbuildmat.2017.10.087
DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.087
Google Scholar
Lin P., Huang W., Li Y., Tang N., Xiao F.: Investigation of influence factors on low temperature properties of SBS modified asphalt. Construction and Building Materials, 154, 2017, 609-622, DOI: 10.1016/j.conbuildmat.2017.06.118
DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.118
Google Scholar