Chang C.S., Liu Y.: Stress and fabric in granular material. Theoretical and Applied Mechanics Letters, 3, 2, 2013, ID article 021002, DOI: 10.1063/2.1302102
Google Scholar
Wang S., Miao Y., Wang L.: Investigation of the force evolution in aggregate blend compaction process and the effect of elongated and flat particles using DEM. Construction and Building Materials, 258, 2020, ID article: 119674, DOI: 10.1016/j.conbuildmat.2020.119674
Google Scholar
Zhou W., Yang L., Ma G., Chang X., Cheng Y., Li D.: Macro–micro responses of crushable granular materials in simulated true triaxial tests. Granular Matter, 17, 4, 2015, 497-509, DOI: 10.1007/s10035-015-0571-3
Google Scholar
Gou D., Li Y., An X., Yang R.: DEM modelling of particle fragmentation during compaction of particles. Powder Technology, 398, 2022, ID article: 117073, DOI:10.1016/j.powtec.2021.117073
Google Scholar
Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique, 29, 1, 1979,
Google Scholar
- 65, DOI: 10.1680/geot.1979.29.1.47
Google Scholar
Cil M.B., Buscarnera G.: DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils. Granular Matter, 18, 3, 2016, ID article: 36, DOI: 10.1007/s10035-016-0638-9
Google Scholar
McDowell G.R., de Bono J.P.: On the micro mechanics of one-dimensional normal compression. Geotechnique, 63, 11, 2013, 895-908, DOI: 10.1680/geot.12.P.041
Google Scholar
Zhang C., Zhao Y., Bai Q.: 3D DEM method for compaction and breakage characteristics simulation of broken rock mass in goaf. Acta Geotechnica, 7, 2021, 2765-2781, DOI: 10.1007/s11440-021-01379-3
Google Scholar
Jia M., Liu B., Xue J., Ma G.: Coupled three-dimen-sional discrete element–finite difference simulation of dynamic compaction. Acta Geotech, 16, 3, 2021, 731-47, DOI: 10.1007/s11440-020-01055-y
Google Scholar
Zhu X., Qian G., Yu H., Yao D., Shi C., Zhang C.: Evaluation of coarse aggregate movement and contact unbalanced force during asphalt mixture compaction process based on discrete element method. Construction and Building Materials, 328, 2022, ID article: 127004, DOI: 10.1016/j.conbuildmat.2022.127004
Google Scholar
Ma Z., Liao H., Ning C., Liu L.: Numerical study of the dynamic compaction via DEM. Japanese Geotechnical Society Special Publication, 1, 3, 2015, 17–22, DOI:10.3208/jgssp.CPN-17
Google Scholar
Wang C., Moharekpour M., Liu Q., Zhang Z., Liu P., Oeser M.: Investigation on asphalt-screed interaction during pre-compaction: Improving paving effect via numerical simulation. Construction and Building Materials, 289, 2021, ID article: 123164, DOI: 10.1016/j. conbuildmat.2021.123164
Google Scholar
Przybyłowicz M., Sysyn M., Gerber U., Koval-chuk V., Fischer S.: Comparison of the effects and efficiency of vertical and side tamping methods for ballasted railway tracks. Construction and Building Materials, 314, 2022, ID article: 125708, DOI: 10.1016/j.conbuildmat.2021.125708
Google Scholar
Qi Q., Chen Y., Nie Z., Liu Y.: Investigation of the compaction behaviour of sand-gravel mixtures via DEM: Effect of the sand particle shape under vibration loading. Computers and Geotechnics, 154, 2023, ID article: 105153, DOI: 10.1016/j.compgeo.2022.105153
Google Scholar
Pouranian M.R., Shishehbor M., Haddock J.E.: Im-pact of the coarse aggregate shape parameters on compaction characteristics of asphalt mixtures. Powder Technology, 363, 2020, 369-386, DOI: 10.1016/j.pow-tec.2020.01.014
Google Scholar
Komaragiri S., Gigliotti A., Bhasin A.: Feasibility of using a physics engine to virtually compact asphalt mixtures in a gyratory compactor. Construction and Building Materials, 308, 2021, ID article: 124977, DOI: 10.1016/j.conbuildmat.2021.124977
Google Scholar
Chen J., Huang B., Shu X., Hu C.: DEM simulation of laboratory compaction of asphalt mixtures using an open source code. Journal of Materials in Civil Engineering, 27, 3, 2015, ID article: 04014130, DOI: 10.1061/(ASCE)MT.1943-5533.0001069
Google Scholar
Ciantia M.O., Arroyo M., Calvetti F., Gens A.: An approach to enhance efficiency of DEM modelling of soils with crushable grains. Geotechnique, 65, 2, 2015, 91-110, DOI: 10.1680/geot.13.P.218
Google Scholar
Brzeziński K., Gladky A.: Clump breakage algorithm for DEM simulation of crushable aggregates. Tribology International, 173, 2022, ID article: 107661, DOI: 10.1016/j.triboint.2022.107661
Google Scholar
Šmilauer V., Angelidakis V., Catalano E., Caulk R., Chareyre B., Chèvremont W., et al.: Yade Documentation 3rd ed., 2021, DOI: 10.5281/ZENODO.5705394
Google Scholar
Standardization E.C. for: HRN EN 13286-2: 2010 Unbound and Hydraulically Bound Mixtures – Part 2: Test Method for Laboratory Dry Density and Water Content - Proctor Compaction
Google Scholar
PN-S-02205:1998: Polish standard: Roads – Earthwork -Specifications and tests, 1998
Google Scholar
Hu W., Polaczyk P., Gong H., Ma Y., Huang B.: Visu-alization and quantification of soil laboratory impact compaction. Journal of Rock Mechanics and Geo-technical Engineering, 14, 2, 2022, 616-624, DOI: 10.1016/j.jrmge.2021.07.001
Google Scholar
Xiao J., Zhang X., Zhang D., Xue L., Sun S., Stránský J., et al.: Morphological reconstruction method of irregular shaped ballast particles and application in numerical simulation of ballasted track. Transportation Geotechnics, 24, 2020, ID article: 100374, DOI: 10.1016/j.tr-geo.2020.100374
Google Scholar
An P., Tang H., Li C., Fang K., Lu S., Zhang J.: A fast and practical method for determining particle size and shape by using smartphone photogrammetry. Measurement, 193, 2022, ID article: 110943, DOI: 10.1016/j. measurement.2022.110943
Google Scholar
Li R., Hu X., Chen F., Wang X., Xiong H., Wu H.: A systematic framework for DEM study of realistic gravel-sand mixture from particle recognition to macro- and micro-mechanical analysis. Transportation Geotechnics, 34, 2022, ID article: 100693, DOI: 10.1016/j. trgeo.2021.100693
Google Scholar
Brzeziński K., Duda A., Styk A., Kowaluk T.: Photogrammetry-based volume measurement framework for the particle density estimation of LECA. Materials, 15, 15, 2022, ID article: 5388, DOI: 10.3390/ma15155388
Google Scholar
Paixão A., Resende R., Fortunato E.: Photogrammetry for digital reconstruction of railway ballast particles
Google Scholar
– A cost-efficient method. Construction and Building Materials, 191, 2018, 963-976, DOI: 10.1016/j.con-buildmat.2018.10.048
Google Scholar
Huschek-Juhász E., Németh A., Sysyn M., Baranyai G., Liu J., Fischer S.: Testing the fragmentation of railway ballast material by laboratory methods using Proctor compactor. Scientific Bulletin of the National Mining University of Ukraine in Dnipropetrovsk, 1, 2024, 58-68, DOI: 10.33271/nvngu/2024-1/058
Google Scholar
European standard: HRN EN 13286-2:2010 Unbound and Hydraulically Bound Mixtures - Part 2: Test Method for Laboratory Dry Density and Water Content -Proctor Compaction
Google Scholar
Angelidakis V., Nadimi S., Otsubo M., Utili S.: CLUMP: a code library to generate universal multi-sphere particles. SoftwareX, 15, 2021, ID article: 100735, DOI: 10.1016/j.softx.2021.100735
Google Scholar
Suhr B., Six K.: Parametrisation of a DEM model for railway ballast under different load cases. Granular Matter, 19, 4, 2017, 1-16, DOI: 10.1007/s10035-017-0740-7
Google Scholar
Johnson K.L.: Contact mechanics. Cambridge University Press; 1987
Google Scholar
Kozicki J., Tejchman J., Mróz Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granular Matter, 14, 4, 2012, 457-468, DOI: 10.1007/s10035-012-0352-1
Google Scholar
Brzeziński K., Zbiciak A., Gladky A.: Implementation of a viscoelastic boundary condition to Yade – open source DEM software. Journal of Theoretical and Applied Mechanics, 2023, 355-364, DOI: 10.15632/jtam-pl/163053
Google Scholar
Itasca’s Particle Flow Code Documentation 7.0, software, 2021
Google Scholar
Šmilauer V.: Cohesive particle model using discrete element method on the Yade platform. PhD Thesis. České vysoké učení technické v Praze. Vypočetní a informační centrum, 2010
Google Scholar
Park D., Michalowski R.L.: Time-dependent model for sand grain deflection including contact maturing under sustained load. Granular Matter, 22, 2, 2020, ID article: 40, DOI: 10.1007/s10035-020-1008-1
Google Scholar
Tavares L.M., Rodriguez V.A., Sousani M., Padros C.B., Ooi J.Y.: An effective sphere-based model for breakage simulation in DEM. Powder Technology, 392, 2021, 473-488, DOI: 10.1016/j.powtec.2021.07.031
Google Scholar
Liu J., Sysyn M., Liu Z., Kou L., Wang P.: Studying the Strengthening Effect of Railway Ballast in the Direct Shear Test due to Insertion of Middle-size Ballast Particles. Journal of Applied and Computational Mechanics, 8, 4, 2022, 1387-1397, DOI: 10.22055/jacm.2022.40206.3537
Google Scholar
Eliáš J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technology, 264, 2014, 458–65, DOI: 10.1016/j.powtec.2014.05.052
Google Scholar
Gladkyy A., Kuna M.: DEM simulation of polyhedral particle cracking using a combined Mohr–Coulomb–Weibull failure criterion. Granular Matter, 19, 3, 2017, ID article: 41, DOI: 10.1007/s10035-017-0731-8
Google Scholar
De Arruda Tino A.A., Tavares L.M.: Simulating breakage tests using the discrete element method with polyhedral particles. Computational Particle Mechanics, 9, 4, 2022, 811-823, DOI: 10.1007/s40571-021-00448-4
Google Scholar
Lisjak A., Grasselli G.: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. Journal of Rock Mechanics and Geotechnical Engineering, 6, 4, 2014, 301-314, DOI: 10.1016/j. jrmge.2013.12.007
Google Scholar
Yu F.: Particle breakage in granular soils: a review. Particulate Science and Technology, 39, 1, 2021, 91-100, DOI: 10.1080/02726351.2019.1666946
Google Scholar
Xiao Y., Desai C.S., Daouadji A., Stuedlein A.W., Liu H., Abuel-Naga H.: Grain crushing in geoscience materials–Key issues on crushing response, measurement and modeling: Review and preface. Geoscience Frontiers, 11, 2, 2020, 363-374, DOI: 10.1016/j.gsf.2019.11.006
Google Scholar
Lai R., Xu F., Qi Q., Nie Z.: Exploring the effects of gravel shapes on vibration compaction behaviours of coarse-grained mixtures via DEM simulations. International Journal of Pavement Engineering, 24, 1, 2023, ID arti-cle: 2201501, DOI: 10.1080/10298436.2023.2201501
Google Scholar
Coetzee C.J.: Calibration of the discrete element method and the effect of particle shape. Powder Technology, 297, 2016, 50-70, DOI: 10.1016/j.powtec.2016.04.003
Google Scholar
Brzeziński K., Ciężkowski P., Bąk S.: Tricking the fractal nature of granular materials subjected to crushing. Powder Technology, 425, 2023, ID article: 118601, DOI: 10.1016/j.powtec.2023.118601
Google Scholar
Zhu S., Ye H., Yang Y., Ma G.: Research and application on large-scale coarse-grained soil filling characteristics and gradation optimization. Granular Matter, 24, 4, 2022, ID article: 121, DOI: 10.1007/s10035-022-01280-0
Google Scholar
Rosato A., Strandburg K.J., Prinz F., Swendsen R.H.: Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. Physical Review Letters, 58, 10, 1987, 1038-1040, DOI: 10.1103/PhysRevLett.58.1038
Google Scholar
Krawczyk B., Szydło A., Mackiewicz P., Dobrucki D.: Assessment criteria of the recycled aggregate cement bound bases. Roads and Bridges - Drogi i Mosty, 18, 2, 2019, 109-126, DOI: 10.7409/rabdim.019.007
Google Scholar
Graczyk M., Bebłacz D.: Roller-compacted concrete with the use of recycled aggregate for local road pavement execution. Roads and Bridges - Drogi i Mosty, 22, 4, 2023, 433-438, DOI: 10.7409/rabdim.023.025
Google Scholar
Stokfisz A., Liphardt A.: Assessment of crack propagation resistance in SMA mixtures with reclaimed asphalt pavement. Roads and Bridges - Drogi i Mosty, 22, 4, 2023, 593-604, DOI: 10.7409/rabdim.023.039
Google Scholar
Suhr B., Skipper W.A., Lewis R., Six K.: DEM modelling of railway ballast using the Conical Damage Model: a comprehensive parametrisation strategy. Granular Matter, 24, 1, 2022, ID article: 40, DOI: 10.1007/s10035-021-01198-z
Google Scholar
Juhász E., Fischer S.: Investigation of railroad ballast particle breakage. Pollack Periodica, 14, 2, 2019, 3-14, DOI: 10.1556/606.2019.14.2.1
Google Scholar
Eliáš J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technology, 264, 2014, 458-465, DOI: 10.1016/j.powtec.2014.05.052
Google Scholar
Liu Y., Gao R., Chen J.: A new DEM model to simulate the abrasion behavior of irregularly-shaped coarse granular aggregates. Granular Matter, 23, 3, 2021, ID article: 61, DOI: 10.1007/s10035-021-01130-5
Google Scholar
Ngo T., Indraratna B.: Mitigating ballast degrada-tion with under-sleeper rubber pads: Experimental and numerical perspectives. Computers and Geotechnics, 122, 2020, ID article: 103540, DOI: 10.1016/j.compgeo.2020.103540
Google Scholar