Zhang J., Ding L., Li F., Peng J.: Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China. Journal of Cleaner Production, 255, 2020, ID article: 120223, DOI: 10.1016/j.jclepro.2020.120223
DOI: https://doi.org/10.1016/j.jclepro.2020.120223
Google Scholar
Mehrjardi G.T., Azizi A., Haji-Azizi A., Asdollafardi G.: Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics, 23, 2020, ID article: 100349, DOI: 10.1016/j.trgeo.2020.100349
DOI: https://doi.org/10.1016/j.trgeo.2020.100349
Google Scholar
Huber S., Henzinger C., Heyer D.: Influence of water and frost on the performance of natural and recycled materials used in unpaved roads and road shoulders. Transportation Geotechnics, 22, 2020, ID article: 100305, DOI: 10.1016/j.trgeo.2019.100305
DOI: https://doi.org/10.1016/j.trgeo.2019.100305
Google Scholar
Tavira J., Jiménez J.R., Ledesma E.F., López-Uceda A., Ayuso J.: Real-scale study of a heavy traffic road built with in situ recycled demolition waste. Journal of Cleaner Production, 248, 2020, ID article: 119219, DOI: 10.1016/j.jclepro.2019.119219
DOI: https://doi.org/10.1016/j.jclepro.2019.119219
Google Scholar
Zieliński K.: Impact of recycled aggregates on selected physical and mechanical characteristics of cement concrete. Procedia Engineering, 172, 2017, 1291-1296, DOI: 10.1016/j.proeng.2017.02.157
DOI: https://doi.org/10.1016/j.proeng.2017.02.157
Google Scholar
Liu L., Li Z., Cai G., Liu X., Yan S.: Humidity field characteristics in road embankment constructed with recycled construction wastes. Journal of Cleaner Production, 259, 2020, ID article: 120977, DOI: 10.1016/j.jclepro.2020.120977
DOI: https://doi.org/10.1016/j.jclepro.2020.120977
Google Scholar
Liu L., Li Z., Congress S.S.C., Liu X., Dai B.: Evaluating the influence of moisture on settling velocity of road embankment constructed with recycled construction wastes. Construction and Building Materials, 241, 2020, ID article: 117988, DOI: 10.1016/j.conbuildmat.2019.117988
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117988
Google Scholar
Cristelo N., Vieira C.S., de Lurdes Lopes M.: Geotechnical and geoenvironmental assessment of recycled construction and demolition waste for road embankments. Procedia Engineering, 143, 2016, 51-58, DOI: 10.1016/j.proeng.2016.06.007
DOI: https://doi.org/10.1016/j.proeng.2016.06.007
Google Scholar
Soleimanbeigi A., Edil T.B., Benson C.H.: Engineering properties of recycled materials for use as embankment fill. Geo-Congress 2014, Atlanta, 3645-3657, DOI: 10.1061/9780784413272.353
DOI: https://doi.org/10.1061/9780784413272.353
Google Scholar
Soleimanbeigi A., Edil T.B.: Compressibility of recycled materials for use as highway embankment fill. Journal of Geotechnical and Geoenvironmental Engineering, 141, 5, 2015, DOI: 10.1061/(ASCE)GT.1943-5606.0001285
DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001285
Google Scholar
Arulrajah A., Disfani M.M., Horpibulsuk S., Suksiripattanapong C., Prongmanee N.: Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials, 58, 2014, 245-257, DOI: 10.1016/j.conbuildmat.2014.02.025
DOI: https://doi.org/10.1016/j.conbuildmat.2014.02.025
Google Scholar
Azam A.M., Cameron D.A.: Geotechnical properties of blends of recycled clay masonry and recycled concrete aggregates in unbound pavement construction. Journal of Materials in Civil Engineering, 25, 6, 2013, 788-798, DOI: 10.1061/(ASCE)MT.1943-5533.0000634
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000634
Google Scholar
Gabr A.R., Cameron D.A.: Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering, 24, 6, 2012, DOI: 10.1061/(ASCE)MT.1943-5533.0000447
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000447
Google Scholar
Jiménez J.R., Agrela F., Ayuso J., López M.: A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base. Materiales de Construcción, 61, 302, 2011, 289-302, DOI: 10.3989/mc.2010.54009
DOI: https://doi.org/10.3989/mc.2010.54009
Google Scholar
O’Mahony M.M., Milligan G.W.E.: Use of recycled materials in subbase layers. Transportation Research Record, 1310, 1991, 73-80, https://onlinepubs.trb.org/Onlinepubs/trr/1991/1310/1310-010.pdf (15.01.2023)
Google Scholar
Vegas I., Ibańez J.A., Lisbona A., de Cortazar A.S., Frías M.: Pro-normative research on the use of mixed recycled aggregates in unbound road sections. Construction and Building Materials, 25, 5, 2011, 2674-2682, DOI: 10.1016/j.conbuildmat.2010.12.018
DOI: https://doi.org/10.1016/j.conbuildmat.2010.12.018
Google Scholar
Norambuena-Contreras J., Quilodran J., Gonzalez-Torre I., Chavez M., Borinaga-Trevińo R.: Electrical and thermal characterisation of cement-based mortars containing recycled metallic waste. Journal of Cleaner Production, 190, 2018, 737-751, DOI: 10.1016/j.jclepro.2018.04.176
DOI: https://doi.org/10.1016/j.jclepro.2018.04.176
Google Scholar
Hagnell M.K., Ĺkermo M.: The economic and mechanical potential of closed loop material usage and recycling of fibre-reinforced composite materials. Journal of Cleaner Production, 223, 2019, 957-968, DOI: 10.1016/j.jclepro.2019.03.156
DOI: https://doi.org/10.1016/j.jclepro.2019.03.156
Google Scholar
López-Alonso M., Martinez-Echevarria M.J., Garach L., Galán A., Ordońez J., Agrela F.: Feasible use of recycled alumina combined with recycled aggregates in road construction. Construction and Building Materials, 195, 2019, 249-257, DOI: 10.1016/j.conbuildmat.2018.11.084
DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.084
Google Scholar
Ren J., Wang S., Zang G.: Effects of recycled aggregate composition on the mechanical characteristics and material design of cement stabilized cold recycling mixtures using road milling materials. Construction and Building Materials, 244, 2020, ID article: 118329, DOI: 10.1016/j.conbuildmat.2020.118329
DOI: https://doi.org/10.1016/j.conbuildmat.2020.118329
Google Scholar
Fedrigo W., Núńez W.P., Kleinert T.R., Matuella M.F., Ceratti J.A.P.: Strength, shrinkage, erodibility and capillary flow characteristics of cement-treated recycled pavement materials. International Journal of Pavement Research and Technology, 10, 5, 2017, 393-402, DOI: 10.1016/j.ijprt.2017.06.001
DOI: https://doi.org/10.1016/j.ijprt.2017.06.001
Google Scholar
Wang Q.Z., Wang N.N., Tseng M.L., Huang Y.M., Li N.L.: Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China. Journal of Cleaner Production, 249, 2020, ID article: 119411, DOI: 10.1016/j.jclepro.2019.119411
DOI: https://doi.org/10.1016/j.jclepro.2019.119411
Google Scholar
Nanjegowda V.H., Biligiri K.P.: Recyclability of rubber in asphalt roadway systems: A review of applied research and advancement in technology. Resources, Conservation & Recycling, 155, 2020, ID article: 104655, DOI: 10.1016/j.resconrec.2019.104655
DOI: https://doi.org/10.1016/j.resconrec.2019.104655
Google Scholar
Liu L., Cai G., Zhang J., Liu X., Liu K.: Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review. Renewable and Sustainable Energy Reviews, 126, 2020, ID article: 109831, DOI: 10.1016/j.rser.2020.109831
DOI: https://doi.org/10.1016/j.rser.2020.109831
Google Scholar
Nwakaire C.M., Yap S.P., Yuen C.W., Onn C.C., Koting S., Babalghaith A.M.: Laboratory study on recycled concrete aggregate based asphalt mixtures for sustainable flexible pavement surfacing. Journal of Cleaner Production, 262, 2020, ID article: 121462, DOI: 10.1016/j.jclepro.2020.121462
DOI: https://doi.org/10.1016/j.jclepro.2020.121462
Google Scholar
Kox S., Vanroelen G., Van Herck J., de Krem H., Vandoren B.: Experimental evaluation of the high-grade properties of recycled concrete aggregates and their application in concrete road pavement construction. Case Studies in Construction Materials, 11, 2019, ID article: e00282, DOI: 10.1016/j.cscm.2019.e00282
DOI: https://doi.org/10.1016/j.cscm.2019.e00282
Google Scholar
Zhang L.W., Sojobi A.O., Kodur V.K.R., Liew K.M.: Effective utilization and recycling of mixed recycled aggregates for a greener environment. Journal of Cleaner Production, 236, 2019, ID article: 117600, DOI: 10.1016/j.jclepro.2019.07.075
DOI: https://doi.org/10.1016/j.jclepro.2019.07.075
Google Scholar
Visintin P., Xie T., Bennett B.: A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, 248, 2020, ID article: 119243, DOI: 10.1016/j.jclepro.2019.119243
DOI: https://doi.org/10.1016/j.jclepro.2019.119243
Google Scholar
Kuźniewski J., Skotnicki Ł.: Properties of mineral-cement emulsion mixtures based on concrete aggregates from recycling. Case Studies in Construction Materials, 12, 2019, ID article: e00309, DOI: 10.1016/j.cscm.2019.e00309
DOI: https://doi.org/10.1016/j.cscm.2019.e00309
Google Scholar
Chomicz-Kowalska A., Maciejewski K.: Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements. Journal of Cleaner Production, 258, 2020, ID article: 120517, DOI: 10.1016/j.jclepro.2020.120517
DOI: https://doi.org/10.1016/j.jclepro.2020.120517
Google Scholar
Bostanci S.C.: Use of waste marble dust and recycled glass for sustainable concrete production. Journal of Cleaner Production, 251, 2020, ID article: 119785, DOI: 10.1016/j.jclepro.2019.119785
DOI: https://doi.org/10.1016/j.jclepro.2019.119785
Google Scholar
Birgisdóttir H., Bhander G., Hauschild M.Z., Christensen T.H.: Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Management, 27, 8, 2007, S75-S84, DOI: 10.1016/j.wasman.2007.02.016
DOI: https://doi.org/10.1016/j.wasman.2007.02.016
Google Scholar
Loaiza A., Colorado H.A.: Marshall stability and flow tests for asphalt concrete containing electric arc furnace dust waste with high ZnO contents from the steel making process. Construction and Building Materials, 166, 2018, 769-778, DOI: 10.1016/j.conbuildmat.2018.02.012
DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.012
Google Scholar
Chen T., Luan Y., Zhu J., Huang X., Ma S.: Mechanical and microstructural characteristics of different interfaces in cold recycled mixture containing cement and asphalt emulsion. Journal of Cleaner Production, 258, 2020, ID article: 120674, DOI: 10.1016/j.jclepro.2020.120674
DOI: https://doi.org/10.1016/j.jclepro.2020.120674
Google Scholar
Chen T., Ma T., Huang X., Ma S., Tang F., Wu S.: Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture. Journal of Cleaner Production, 263, 2020, ID article: 121467, DOI: 10.1016/j.jclepro.2020.121467
DOI: https://doi.org/10.1016/j.jclepro.2020.121467
Google Scholar
Bai G., Zhu C., Liu C., Liu B.: An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Construction and Building Materials, 240, 2020, ID article: 117978, DOI: 10.1016/j.conbuildmat.2019.117978
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117978
Google Scholar
Mallick R.B., Radzicki M.J., Zaumanis M., Frank R.: Use of system dynamics for proper conservation and recycling of aggregates for sustainable road construction. Resources, Conservation and Recycling, 86, 2014, 61-73, DOI: 10.1016/j.resconrec.2014.02.006
DOI: https://doi.org/10.1016/j.resconrec.2014.02.006
Google Scholar
Sultan A.A.M., Lou E., Mativenga P.T.: What should be recycled: An integrated model for product recycling desirability. Journal of Cleaner Production, 154, 2017, 51-60, DOI: 10.1016/j.jclepro.2017.03.201
DOI: https://doi.org/10.1016/j.jclepro.2017.03.201
Google Scholar
Bendimerad A.Z., Delsaute B., Rozičre E., Staquet S., Loukili A.: Advanced techniques for the study of shrinkage-induced cracking of concrete with recycled aggregates at early age. Construction and Building Materials, 233, 2020, ID article: 117340, DOI: 10.1016/j.conbuildmat.2019.117340
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117340
Google Scholar
Skotnicki Z.Ł., Kuźniewski J., Szydło A.: Stiffness identification of foamed asphalt mixtures with cement, evaluated in laboratory and in situ in road pavements. Materials, 13, 5, 2020, ID article: 1128, DOI: 10.3390/ma13051128
DOI: https://doi.org/10.3390/ma13051128
Google Scholar
Yildirim S.T., Meyer C., Herfellner S.: Effects of internal curing on the strength, drying shrinkage and freeze-thaw resistance of concrete containing recycled concrete aggregates. Construction and Building Materials, 91, 2015, 288-296, DOI: 10.1016/j.conbuildmat.2015.05.045
DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.045
Google Scholar
Li Q., Wang Z., Li Y., Shang J.: Cold recycling of lime-fly ash stabilized macadam mixtures as pavement bases and subbases. Construction and Building Materials, 169, 2018, 306-314, DOI: 10.1016/j.conbuildmat.2018.03.030
DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.030
Google Scholar
Guo H., Wang Z., Liang Q., Li G.: Improvement of stability and mechanical properties of cement asphalt emulsion composites using nano fibrillated celluloses. Cement and Concrete Composites, 125, 2022, ID article: 104330, DOI: 10.1016/j.cemconcomp.2021.104330
DOI: https://doi.org/10.1016/j.cemconcomp.2021.104330
Google Scholar
Wang J., Zhang J., Cao D., Dang H., Ding B.: Comparison of recycled aggregate treatment methods on the performance for recycled concrete. Construction and Building Materials, 234, 2020, ID article: 117366, DOI: 10.1016/j.conbuildmat.2019.117366
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117366
Google Scholar
Abate S.Y., Song K.I., Song J.K., Lee B.Y., Kim H.K.: Internal curing effect of raw and carbonated recycled aggregate on the properties of high-strength slag-cement mortar. Construction and Building Materials, 165, 2018, 64-71, DOI: 10.1016/j.conbuildmat.2018.01.035
DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.035
Google Scholar
Wu M., Zhang Y., Jia Y., She W., Liu G.: Study on the role of activators to the autogenous and drying shrinkage of lime-based low carbon cementitious materials. Journal of Cleaner Production, 257, 2020, ID article: 120522, DOI: 10.1016/j.jclepro.2020.120522
DOI: https://doi.org/10.1016/j.jclepro.2020.120522
Google Scholar
Abdollahnejad Z., Mastali M., Woof B., Illikainen M.: High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: Microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Construction and Building Materials, 241, 2020, ID article: 118129, DOI: 10.1016/j.conbuildmat.2020.118129
DOI: https://doi.org/10.1016/j.conbuildmat.2020.118129
Google Scholar
Zhou J., Zeng M., Chen Y., Zhong M.: Evaluation of cement stabilized recycled concrete aggregates treated with waste oil and asphalt emulsion. Construction and Building Materials, 199, 2019, 143-153, DOI: 10.1016/j.conbuildmat.2018.12.028
DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.028
Google Scholar
Kukiełka J., Bańkowski W.: The experimental study of mineral-cement-emulsion mixtures with rubber powder addition. Construction and Building Materials, 226, 2019, 759-766, DOI: 10.1016/j.conbuildmat.2019.07.276
DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.276
Google Scholar
Dołżycki B., Jaczewski M., Szydłowski C.: The long-term properties of mineral-cement-emulsion mixtures. Construction and Building Materials, 156, 2017, 799-808, DOI: 10.1016/j.conbuildmat.2017.09.032
DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.032
Google Scholar
Szydło A., Mackiewicz P., Skotnicki Ł., Kuźniewski J.: Ocena wpływu innowacyjnego środka wiążącego na właściwości fizyczne, mechaniczne i reologiczne recyklowanej podbudowy wykonanej z mieszanki mineralno-spoiwowejz emulsją asfaltową. Program „Nowoczesne technologie materiałowe”, TECHMATSTRATEG, Raport nr 3/2/PWr/2019
Google Scholar
Iwański M., Chomicz-Kowalska A., Buczyński P., Mazurek G.: Optymalizacja składu środka wiążącego o uniwersalnym charakterze zastosowania w recyklowanych podbudowach. Opracowanie nomogramów uzyskanych właściwości dla zapraw i zaczynów zgodnie z założonym planem eksperymentu dla zaprojektowanych spoiw mieszanych. Program „Nowoczesne technologie materiałowe”, TECHMATSTRATEG, Raport nr 2/1/PŚk/2018
Google Scholar
Dołżycki B.: Instrukcja projektowania i wbudowania mieszanek mineralno-cementowo-emulsyjnych (MCE). Załącznik nr 9.4.2 RID, 2019
Google Scholar
Szydło A., Mackiewicz P., Skotnicki Ł., Kuźniewski J.: Innowacyjna technologia wykorzystująca optymalizację środka wiążącego przeznaczona do technologii recyklingu głębokiego na zimno konstrukcji nawierzchni zapewniająca jej trwałość eksploatacyjną, Raport serii SPR 74, Politechnika Wrocławska, Wrocław, 2019
Google Scholar
Kuźniewski J., Skotnicki Ł.: Influence of the compaction method on mineral-cement emulsion mixture properties. Journal of Materials in Civil Engineering, 28, 11, 2016, ID article: 04016138, DOI: 10.1061/(ASCE)MT.1943-5533.0001651
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001651
Google Scholar
Kuźniewski J., Skotnicki Z.Ł., Szydło A.: Fatigue durability of asphalt-cement mixtures. Bulletin of the Polish Academy of Sciences: Technical Sciences, 63, 1, 2020, 107-111, DOI: 10.1515/bpasts-2015-0012
DOI: https://doi.org/10.1515/bpasts-2015-0012
Google Scholar
Guha A.H.; Assaf G.J.: Effect of Portland cement as a filler in hot-mix asphalt in hot regions. Journal of Building Engineering, 28, 2020, ID atticle: 101036, DOI: 10.1016/j.jobe.2019.101036
DOI: https://doi.org/10.1016/j.jobe.2019.101036
Google Scholar
Du S.: Mechanical properties and shrinkage characteristics of cement stabilized macadam with asphalt emulsion. Construction and Building Materials, 203, 2019, 408-416, DOI: 10.1016/j.conbuildmat.2019.01.126
DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.126
Google Scholar
PN-EN 13286-2:2010 Mieszanki niezwiązane i związane hydraulicznie – Część 2: Metody badań laboratoryjnych gęstości na sucho i zawartości wody – Zagęszczanie metodą Proktora
Google Scholar
PN-EN 13808:2013-10 Asfalty i lepiszcza asfaltowe – Zasady klasyfikacji kationowych emulsji asfaltowych
Google Scholar
Zhang Z., Cong C., Xi W., Li S.: Application research on the performances of pavement structure with foamed asphalt cold recycling mixture. Construction and Building Materials, 169, 2018, 396-402, DOI: 10.1016/j.conbuildmat.2018.02.134
DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.134
Google Scholar
Gui-Ping H., Wing-Gun W.: Effects of moisture on strength and permanent deformation of foamed asphalt mix incorporating RAP materials. Construction and Building Materials, 22, 1, 2008, 30-40, DOI: 10.1016/j.conbuildmat.2006.06.033
DOI: https://doi.org/10.1016/j.conbuildmat.2006.06.033
Google Scholar
Yan J., Ni F., Yang M., Li J.: An experimental study on fatigue properties of emulsion and foam cold recycled mixes. Construction and Building Materials, 24, 11, 2010, 2151-2156, DOI: 10.1016/j.conbuildmat.2010.04.044
DOI: https://doi.org/10.1016/j.conbuildmat.2010.04.044
Google Scholar
PN-EN 12697-26:2018-08 Mieszanki mineralno-asfaltowe – Metody badań – Część 26: Sztywność
Google Scholar
PN-EN 12697-24:2018-08 Mieszanki mineralno-asfaltowe – Metody badań – Część 24: Odporność na zmęczenie
Google Scholar
EN 12697-44:2019 Bituminous mixtures – Test methods for hot mix asphalt – Part 44: Crack propagation by semi-circular bending test
Google Scholar
PN-EN 12697-33:2019-03 Mieszanki mineralno-asfaltowe – Metoda badań – Część 33: Przygotowanie próbek zagęszczanych urządzeniem wałującym
Google Scholar
Iwański M., Buczyński P., Mazurek G.: Ocena właściwości fizycznych, mechanicznych i reologicznych recyklowanej podbudowy z emulsją asfaltową oraz z asfaltem spienionym w aspekcie składu innowacyjnego środka wiążącego w warunkach terenowych – Projekt składu recyklowanej podbudowy z asfaltem spienionym oraz emulsją asfaltową, montaż systemu monitorowania odcinka doświadczalnego. Techmatstrateg. Politechnika Świętokrzyska, Raport 1/4/2019
Google Scholar
Mazurek G., Buczyński P., Iwański M., Horodecka R.: Influence of a three-component hydraulic binder on the properties of recycled base course with foamed bitumen and bituminous emulsion: a field investigation. Roads and Bridges - Drogi i Mosty, 21, 4, 2022, 309-329, DOI: 10.7409/rabdim.022.018
DOI: https://doi.org/10.1007/s43452-021-00192-9
Google Scholar