Roads and Bridges - Drogi i Mosty
21, 3, 2022, 253-271

Potential alkaline reactivity of sands from domestic deposits

Daria Jóźwiak-Niedźwiedzka Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Aneta Antolik Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Kinga Dziedzic Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Paweł Lisowski Mail
Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warsaw
Published: 2022-09-23

Abstract

Sand used as fine aggregate in concrete may, under unfavorable environmental conditions, cause alkali-silica reaction and the consequent deterioration of durability and functional properties of concrete. The aim of this work is to compare alkali-silica reactivity of 18 natural sands of various origin. The potential reactivity of sands was tested according to the procedures PB/1/18 and PB/3/18 established in the Technical Guidelines issued by the General Directorate for National Roads and Motorways. Mineral composition of aggregate was analyzed in order to identify reactive minerals. Mortar bar expansion tests and microscopic analyses of the products of alkali-silica reaction were performed. The research indicated that 6 (33%) out of 18 tested aggregates should be classified as “moderately reactive” and 12 (67%) aggregates should be classified as “non-reactive”. It was demonstrated that the origin of sand affects its susceptibility to alkali-silica reaction.

Keywords


alkali-silica gel, expansion, fine aggregate, reactive minerals, sand.

Full Text:

PDF

References


Broekmans M.A.T.M., Deleterious reactions of aggregate with alkalis in concrete. Reviews in Mineralogy & Geochemistry, 74, 1, 2012, 279-364, DOI: 10.2138/rmg.2012.74.7

Mielich O.: Alkali-silica reaction (ASR) on German motorways: an overview. Otto-Graf-Journal, 18, 2019, 197-208

Gibas K., Glinicki M.A., Dąbrowski M., Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K.: ASR performance testing of air entrained concrete exposed to external alkalis. International Conference on Sustainable Materials, Systems and Structures (SMSS2019) – Novel Methods for Characterization of Materials and Structures, Rovinj, Proceedings PRO 128-5, RILEM Publications, 2019, 59-66

Gautam B.P., Panesar D.K., Sheikh S.A., Vecchio F.J.: Effect of coarse aggregate grading on the ASR expansion and damage of concrete. Cement and Concrete Research, 95, 2017, 75-83, DOI: 10.1016/j.cemconres.2017.02.022

Pan J., Wang W., Wang J., Bai Y., Wang J.: Influence of coarse aggregate size on deterioration of concrete affected by alkali-aggregate reaction. Construction and Building Materials, 329, 2022, 127228, DOI: 10.1016/j.conbuildmat.2022.127228

Venyite P., Nemaleu J.G.D., Kaze R.C., Tchamba A.B., Kamseu E., Melo U.C., Leonelli C.: Alkali-silica reactions in granite-based aggregates: The role of biotite and pyrite. Construction and Building Materials, 320, 2022, 126259, DOI; 10.1016/j.conbuildmat.2021.126259

Antolik A., Jóźwiak-Niedźwiedzka D.: Assessment of the alkali-silica reactivity potential in granitic rocks. Construction and Building Materials, 295, 2021, 123690, DOI: 10.1016/j.conbuildmat.2021.123690

Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A.: Rozpoznanie petrograficzne minerałów reaktywnych w kruszywach krajowych i ich klasyfikacja zgodnie z zasadami RILEM i ASTM. Roads and Bridges – Drogi i Mosty, 16, 3, 2017, 223-239, DOI: 10.7409/rabdim.017.015

Góralczyk S., Filipczyk M.: Aktualne badania reaktywności alkalicznej polskich kruszyw – część II, w: Glapa W. (ed.) Kruszywa Mineralne, t. 2, Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław, 2018, 37-48

Owsiak Z., Zapała J., Czapik P.: Sources of the gravel aggregate reaction with alkalis in concrete. Cement Wapno Beton, 17, 3, 2012, 149-154

Trottier C., Ziapour R., Zahedi A., Sanchez L., Locati F.: Microscopic characterization of alkali-silica reaction (ASR) affected recycled concrete mixtures induced by reactive coarse and fine aggregates. Cement and Concrete Research, 144, 2021, 106426, DOI: 10.1016/j.cemconres.2021.106426

Zahedi A., Trottier C., Sanchez L.F.M., Noël M.: Condition assessment of alkali-silica reaction affected concrete under various confinement conditions incorporating fine and coarse reactive aggregates. Cement and Concrete Research, 153, 2022, 106694, DOI: 10.1016/j.cemconres.2021.106694

Na O., Xi Y., Ou E., Saouma V.: The Effects of alkali-silica reaction on mechanical properties of concretes with three different types of reactive aggregates. Structural Concrete, 17, 1, 2015, 74-83, DOI: 10.1002/suco.201400062

Sanchez L.F.M., Fournier B., Jolin M., Mitchell D., Bastien J.: Overall assessment of Alkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures. Cement and Concrete Research, 93, 2017, 17-31, DOI: 10.1016/j.cemconres.2016.12.001

Naziemiec Z.: Reaktywność alkaliczno-krzemionkowa wybranych krajowych kruszyw drobnych. Roads and Bridges – Drogi i Mosty, 17, 4, 2018, 271-283, DOI: 10.7409/rabdim.018.017

https://www.pgi.gov.pl/psg-1/psg-2/informacja-i-szkolenia/wiadomosci-surowcowe/10844-kruszywa-naturalne-definicja-i-pochodzenie.html

Kozioł W., Machniak Ł., Borcz A., Baic I.: Górnictwo kruszyw w Polsce – szanse i zagrożenia. Inżynieria Mineralna, 17, 2 (38), 2016, 175-182

Piotrowska A.: Złoża naturalnych piasków i żwirów: Zasoby, wydobycie, obrót międzynarodowy. Surowce i maszyny budowlane, 4, 2009, 8-12

Procedura Badawcza GDDKiA PB/1/18, Instrukcja badania reaktywności kruszyw metodą przyśpieszoną w 1 M roztworze NaOH w temperaturze 80°C, Załącznik nr 1 do Wytycznych technicznych klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich, 2019, https://www.gov.pl/attachment/7fac7c30-a800-45a3-8053-a06ebd6361f2

Procedura Badawcza GDDKiA PB/3/18, Zalecenia dotyczące analizy petrograficznej kruszywa, Załącznik nr 3 do Wytycznych technicznych klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich, 2019, https://www.gov.pl/attachment/bf3d3b0a-5a79-4903-8e30-803629296f95

Jóźwiak-Niedźwiedzka D., Glinicki M.A., Gibas K., Baran T.: Alkali-silica reactivity of high density aggregates for radiation shielding concrete. Materials, 11, 11, 2018, 2284, DOI: 10.3390/ma11112284

CSA A23.2-25A-14: Test method for detection of alkali–silica reactive aggregate by accelerated expansion of mortar bars, Canadian Standards Association, Mississauga, 2014

Test Method T363: Accelerated mortar bar test for the assessment of alkali-reactivity of aggregate, Roads and Maritime Services, NSW Government, RMS/Pub 12.033, 2012, https://roads-waterways.transport.nsw.gov.au/business-industry/partners-suppliers/documents/test-methods/t363.pdf

Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K., Glinicki M.A., Gibas K.: Weryfikacja odporności wybranych kruszyw ze skał magmowych na reakcję z alkaliami. Roads and Bridges – Drogi i Mosty, 18, 1, 2019, 67-83, DOI: 10.7409/rabdim.019.005

Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K., Gméling K., Bogusz K.: Laboratory investigations on fine aggregates used for concrete pavements due to the risk of ASR. Road Materials and Pavement Design, 22, 12, 2021, 2883-2895, DOI: 10.1080/14680629.2020.1796767

Garbacik A., Glinicki M.A., Jóźwiak-Niedźwiedzka D., Adamski G., Gibas K.: Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich. Instytut Ceramiki i Materiałów Budowlanych oraz Instytut Podstawowych Problemów Techniki PAN, Kraków-Warszawa, 2019, https://www.gov.pl/web/gddkia/reaktywnosc-kruszyw

Szuflicki M., Malon A., Tymiński M (eds.).: Bilans zasobów złóż kopalin w Polsce wg stanu na 31 XII 2020 r., Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa, 2021

Lukschová Š., Přikryl R., Pertold Z.: Evaluation of the alkali–silica reactivity potential of sands. Magazine of Concrete Research, 61, 8, 2009, 645-654, DOI: 10.1680/macr.2008.61.8.645

Hasdemir S., Tuğrul A., Yilmaz M.: Evaluation of alkali reactivity of natural sands. Construction and Building Materials, 29, 2012, 378-385, DOI: 10.1016/j.conbuildmat.2011.10.029

Vayghan A.G., Farshad Rajabipour F., Arndt C.: The influence of ASR gels composition on their swelling properties. 15th International Conference on Alkali-Aggregate Reaction, Sao Paulo, 2016

Thomas M.: The role of calcium hydroxide in alkali recycling in concrete, calcium hydroxide in concrete. In: Skalny J., Gebauer J., Odler I. (eds.): Materials science of concrete. Special volume: Calcium hydroxide in concrete, American Ceramic Society, Westerville, 2001, 225-236

Borchers I.: Recommendation of RILEM TC 258-AAA: RILEM AAR-12: determination of binder combinations for non-reactive mix design or the resistance to alkali-silica reaction of concrete mixes using concrete prisms − 60 °C test method with alkali supply. Materials and Structures, 54, 6, 202, 2021, DOI: 10.1617/s11527-021-01681-2

Owsiak Z.: Korozja wewnętrzna betonu. Monografie, Studia, Rozprawy nr M66, Wydawnictwo Politechniki Świętokrzyskiej, Kielce, 2015

Wigum B.J., Pedersen L.T., Grelk B., Lindgård J.: Report 2.1. State-of-the art report: Key parameters influencing the alkali aggregate reaction, SINTEF Building and Infrastructure, Trondheim, 2006, https://www.sintef.no/globalassets/upload/byggforsk/partner/report-2.1-final-a06018.pdf

DAfStb Alkali-Richtlinie:2013-10, DAfStb-Richtlinie – Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton (Alkali-Richtlinie), Beuth Verlag GmbH, 2013

DIN EN 932-3:2003-12, Tests for general properties of aggregates – Part 3: Procedure and terminology for simplified petrographic description (includes Amendment A1:2003)

RILEM Recommended Test Method AAR-1: Detection of potential alkali-reactivity of aggregates – Petrographic examination method. In: Nixon P.J., Sims.I. (eds.): RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures. State-of-the-Art Report of the RILEM Technical Committee 219-ACS, RILEM State-of-the-art reports, 17, Springer, 2016

ASTM C295-08: Standard guide for petrographic examination of aggregates for concrete, DOI: 10.1520/C0295-08

Manecki A., Muszyński M. (eds.): Przewodnik do petrografii, AGH, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków, 2008


Potential alkaline reactivity of sands from domestic deposits

  
Jóźwiak-Niedźwiedzka, Daria et al. Potential alkaline reactivity of sands from domestic deposits. Roads and Bridges - Drogi i Mosty, [S.l.], v. 21, n. 3, p. 253-271, sep. 2022. ISSN 2449-769X. Available at: <>. Date accessed: 16 Apr. 2024. doi:http://dx.doi.org/10.7409/rabdim.022.015.