Szydło A., Mackiewicz P., Wardęga R., Krawczyk B.: Katalog typowych konstrukcji nawierzchni sztywnych, Załącznik do zarządzenia Nr 30 Generalnego Dyrektora Dróg Krajowych i Autostrad, Warszawa, 16.06.2014
Google Scholar
Amirkhanian A., Skelton E. (eds.): Proceedings of the 12th International Conference on Concrete Pavements, 27.09.2921 – 01.10.2021, Minneapolis, DOI: 10.33593/i1c2cp
Google Scholar
Korentz J., Jurczak R., Szmatuła F., Rudnicki T.: Właściwości nawierzchni betonowej autostrady A18 po 82 latach eksploatacji. Budownictwo, Technologie, Architektura, 96, 4, 2021, 68-71
Google Scholar
Van Dam T.J., Sutter L.L., Smith K.D., Wade M.J., Peterson K.R.: Guidelines for detection, analysis and treatment of materials-related distress in concrete pavements. Final report, volume 1, FHWA-RD-01-163, 2002
Google Scholar
Sims I., Poole A.B. (eds.): Alkali-Aggregate Reaction in Concrete: A World Review. CRC Press, London 2017
Google Scholar
Owsiak Z., Zapała-Sławeta J., Czapik P.: Diagnosis of concrete structures distress due to alkali-aggregate reaction. Bulletin of the Polish Academy of Sciences: Technical Sciences, 63, 1, 2015, 23-29
Google Scholar
Glinicki M.A., Jóźwiak-Niedźwiedzka D., Antolik A., Dziedzic K., Gibas K.: Susceptibility of selected aggregates from sedimentary rocks to alkali-aggregate reaction. Roads and Bridges - Drogi i Mosty, 18, 1, 2019, 5-24; DOI: 10.7409/rabdim.019.001
Google Scholar
Fishboeck E.K., Harmuth H.: An Austrian experience with identification and assessment of alkali-reaction in motorways, in: Concrete Repair, Rehabilitation and Retrofitting II, edited by M. Alexander, H.D. Beushausen, F. Dehn, P. Moyo, Taylor and Francis Group, London, 2009
Google Scholar
Allard A., Fournier B., Bastien J., Bissonnette B., Sanchez L. , Duchesne J.: Evaluation of the degree of damage caused by alkali-silica reaction in a highway pavement: a case study. 15th International Conference on Alkali-Aggregate Reaction, Sao Paulo, 2016
Google Scholar
Fournier B., Bérubé M.A., Folliard K.J., Thomas M.: Report on the Diagnosis, Prognosis, and Mitigation of Alkali-Silica Reaction (ASR) in Transportation Structures. FHWA, Washington, DC, 2010
Google Scholar
Mielich O.: Alkali-silica reaction (ASR) on German motorways: an overview. Otto-Graf-Journal, 18, 2019, 197-208
Google Scholar
Breitenbücher R., Przondziono R., Meng B., Krütt E., Weise F.: Alkali-Silica-Reaction in concrete pavements considering traffic and de-icing agents. 13th International Symposium on Concrete Roads, Berlin, June 2018
Google Scholar
Frýbort A., Všianský D., Štulířová J., Stryk J., Gregerová M.: Variations in the composition and relations between alkali-silica gels and calcium silicate hydrates in highway concrete. Materials Characterization, 137, 2018, 91-108
Google Scholar
Góralczyk S.: Occurrence and assessment of reactive aggregates in Poland. Institute of Mechanized Construction and Rock Mining, Warsaw, 2003
Google Scholar
Bebłacz D., Kamiński P., Młynarczyk Z.: Analiza wybranych właściwości mieszanki betonowej i betonu stosowanego do budowy betonowych nawierzchni drogowych wykonanych w kraju w latach 2001-2004. Badania i analiza trwałości betonu stosowanego do nawierzchni drogowych pod kątem oceny cech użytkowych i trwałościowych. Etap I. IBDiM, Warszawa, 2004
Google Scholar
PN-B-06714-46:1992 Kruszywa mineralne – Badania – Oznaczanie potencjalnej reaktywności alkalicznej metodą szybką
Google Scholar
Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A.: Petrographic identification of reactive minerals in domestic aggregates and their classification according to RILEM and ASTM recommendations. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 223-239, DOI: 10.7409/rabdim.017.015
Google Scholar
Glinicki M.A.: Methods of qualitative and quantitative assessment of concrete air entrainment. Cement Wapno Beton, 19/81, 6, 2014, 359-369
Google Scholar
Procedura badawcza GDDKiA PB/3/18 – Zalecenia dotyczące analizy petrograficznej kruszywa. GDDKiA Warszawa 2019, https://www.gddkia.gov.pl/pl/1118/dokumenty-techniczne
Google Scholar
Garbacik A., Glinicki M.A., Jóźwiak-Niedźwiedzka D., Adamski G., Gibas K.: Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich. ICiMB i IPPT PAN, Kraków-Warszawa 2019, https://www.gddkia.gov.pl/pl/1118/dokumenty-techniczne
Google Scholar
Glinicki M.A., Litorowicz A.: Crack system evaluation in concrete elements at mesoscale. Bulletin of the Polish Academy of Sciences – Technical Sciences, 54, 4, 2006, 371-379
Google Scholar
ASTM C215-14 Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens, ASTM International, West Conshohocken, PA, 2014
Google Scholar
PN-EN 480-11:2008 Admixtures for concrete, mortar and grout. Test methods. Determination of air void characteristics in hardened concrete
Google Scholar
Katayama T.: Chapter 6. Accelerated expansion test: Japan, in: V. Saouma (ed.), Diagnosis and Prognosis of Alkali Aggregate Reactions Affected Structures – State of the art report of the RILEM Technical Committee 259-ISR. Springer International Publishing, 2021, 133-162
Google Scholar
Procedura badawcza GDDKiA PB/2/18 – Instrukcja badania reaktywności kruszyw w temperaturze 38°C według ASTM C1293/RILEM AAR-3. GDDKiA Warszawa 2019, https://www.gddkia.gov.pl/pl/1118/dokumenty-techniczne
Google Scholar
Procedura badawcza GDDKiA PB/1/18 – Instrukcja badania reaktywności kruszyw metodą przyśpieszoną w 1 M roztworze NaOH w temperaturze 80°C. GDDKiA Warszawa 2019, https://www.gddkia.gov.pl/pl/1118/dokumenty-techniczne
Google Scholar
Fernandes I., Ribeiro M.A., Broekmans M.A.T.M., Sims I. (Eds.): Petrographic Atlas: Characterisation of Aggregates Regarding Potential Reactivity to Alkalis. RILEM 2016
Google Scholar
Boehm-Courjault E., Barbotin S., Leemann A., Scrivener K.: Microstructure, crystallinity and composition of alkali-silica reaction products in concrete determined by transmission electron microscopy. Cement and Concrete Research, 130, 2020, 105988
Google Scholar
Owsiak Z.: Microstructure of alkali-silica reaction products in conventional standard and accelerated testing. Ceramics - Silikaty, 47, 3, 2003, 108-115
Google Scholar
Radlinski M., Olek J., Del Mar Arribas M. et al.: Influence of air-void system parameters on freeze-thaw resistance of pavement concrete-lessons learned from field and laboratory observations. Proceedings of the 9th International Conference on Concrete Pavements, San Francisco, 2008, 824-835
Google Scholar
Marks M., Jóźwiak-Niedźwiedzka D., Glinicki M.A., Olek J., Marks M.: Assesment of scaling durability of concrete with CFBC ash by automatic classification rules. Journal of Materials in Civil Engineering, 24, 7, 2012, 860-867
Google Scholar
International Federation for Structural Concrete (fib-Fédération Internationale du Béton), fib Model Code for Concrete Structures. Ernst & Sohn, Berlin, 2010
Google Scholar
Gholizadeh-Vayghan A., Rajabipour F.: The influence of alkali-silica reaction (ASR) gel composition on its hydrophilic properties and free swelling in contact with water vapour. Cement and Concrete Research, 94, 2017, 49-583, DOI: 10.1016/j.cemconres.2017.01.006
Google Scholar
Poole A.B.: Introduction, chemistry and mechanisms, in: I. Sims, A.B. Poole (eds.), Alkali-Aggregate Reaction in Concrete: A World Review. CRC Press, London 2017, 1-31
Google Scholar
Šachlová Š., Kuchaová A., Pertold Z., Přikryl R.: Microscopic and chemical characterisation of ASR induced by quartz-rich aggregates. 15th Euroseminar on Microscopy Applied to Building Materials, 16-19 June 2014, Delft, 1-10
Google Scholar
Šachlová Š., Kuchaová A., Přikryl R., Pertold Z., Nekvasilová Z.: Factors affecting ASR potential of quartzite from a single quarry (Bohemian Massif, Czech Republic). Conference: 12th SGA Biennial Meeting, 12-15 August 2013, Uppsala, Sweden, Proceedings “Mineral deposit research for a high-tech world”, vol. 4, 1833-1836, DOI: 10.13140/2.1.4690.6561
Google Scholar
Castro N., Wigum B.J.: Assessment of the potential alkali-reactivity of aggregates for concrete by image analysis petrography. Cement and Concrete Research, 42, 2012, 1635-1644
Google Scholar
Breitenbücher R., Sievering C.: Risse in Betonfahrbahndecken – Das Resultat aus Überlagerungen verschiedener, in: R. Nothnagel and H. Twelmeier (eds.), Baustoff und Konstruktion. Springer-Verlag Berlin Heidelberg 2013, 177-188; DOI: 10.1007/978-3-642-29573-7_19
Google Scholar
Giebson C., Voland K., Ludwig H.M., Meng B.: Alkali-silica reaction performance testing of concrete considering external alkalis and pre-existing microcracks. Structural Concrete, 18, 4, 2017, 1-11, DOI: 10.1002/suco.201600173
Google Scholar
Gong F., Takahashi Y., Segawa I., Maekawa K.: Mechanical properties of concrete with smeared cracking by alkali-silica reaction and freeze-thaw cycles. Cement and Concrete Composites, 111, 2020, 103623, DOI: 10.1016/j.cemconcomp.2020.103623
Google Scholar
Borchers I.: Recommendation of RILEM TC 258-AAA: RILEM AAR-12: determination of binder combinations for non-reactive mix design or the resistance to alkali-silica reaction of concrete mixes using concrete prisms – 60°C test method with alkali supply. Materials and Structures, 54, 6, 2021, article no. 202
Google Scholar
Böhm M., Eickschen E., Hermerschmidt W., Müller C., Pierkes R.: Beurteilung von Betonfahrbahndecken hinsichtlich deren in-situ AKR-Potenzial bei Gesteinskörnungen nach dem ARS Nr. 04/2013, Berichte der Bundesanstalt für Straßenwesen. Straßenbau, Heft S162, 2021
Google Scholar