Słowik M., Bartkowiak M.: Review of analytical-empirical methods for determining stiffness moduli of asphalt mixtures. Roads and Bridges - Drogi i Mosty, 17, 1, 2018, 5-22, DOI: 10.7409/rabdim.018.001
Google Scholar
Kok B.V., Kuloglu N.: Effects of Two-Phase Mixing Method on Mechanical Properties of Hot Mix Asphalt. Road Materials and Pavement Design, 12, 4, 2011, 721-738, DOI: 10.1080/14680629.2011.9713892
Google Scholar
Mokhtari A., Moghadas Nejad F.: Mechanistic approach for fiber and polymer modified SMA mixtures. Construction and Building Materials, 36, 2012, 381-390, DOI: 10.1016/j.conbuildmat.2012.05.032
Google Scholar
Tayfur S., Ozen H., Aksoy A.: Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Construction and Building Materials, 21, 2, 2007, 328-337, DOI: 10.1016/j.conbuildmat.2005.08.014
Google Scholar
Shafabakhsh G., Tanakizadeh A.: Investigation of loading features effects on resilient modulus of asphalt mixtures using Adaptive Neuro-Fuzzy Inference System. Construction and Building Materials, 76, 2015, 256-263, DOI: 10.1016/j.conbuildmat.2014.11.069
Google Scholar
Lee H., Kim S., Choubane B., Upshaw P.: Construction of dynamic modulus master curves with resilient modulus and creep test data. Transportation Research Record: Journal of the Transportation Research Board, 2296, 1, 2012, 1-14, DOI: 10.3141/2296-01
Google Scholar
Enieb M., Diab A.: Characteristics of asphalt binder and mixture containing nanosilica. International Journal of Pavement Research and Technology, 10, 2, 2017, 148-157, DOI: 10.1016/j.ijprt.2016.11.009
Google Scholar
Sarnowski M.: Rheological properties of road bitumen binders modified with SBS polymer and polyphosphoric acid. Roads and Bridges - Drogi i Mosty, 14, 1, 2015, 47-65, DOI: 10.7409/rabdim.015.004
Google Scholar
Bahia H.U.: Modeling of asphalt binder rheology and its application to modified binders. Modeling of Asphalt Concrete. ASCE Press, McGraw-Hill Construction, New York, 2004, 11-64
Google Scholar
Plewa A.: Asphalt mixtures with binders fluidized by addition of vegetable origin oil for applications as flexible anti-crack layers. Roads and Bridges - Drogi i Mosty, 18, 3, 2019, 181-192, DOI: 10.7409/rabdim.019.012
Google Scholar
Baig M.G., Wahhab H.I.A.: Mechanistic Evaluation of Hedmanite and Lime Modified Asphalt Concrete. Journal of Materials in Civil Engineering, 10, 3, 1998, 153-160, DOI: 10.1061/(ASCE)0899-1561(1998)10:3(153)
Google Scholar
Sengul C.E., Oruc S., Iskender E., Aksoy A.: Evaluation of SBS modified stone mastic asphalt pavement performance. Construction and Building Materials, 41, 2013, 777-783, DOI:10.1016/j.conbuildmat.2012.12.065
Google Scholar
Fontes L.P.T.L., Trichęs G., Pais J.C., Pereira P.A.A.: Evaluating permanent deformation in asphalt rubber mixtures. Construction and Building Materials, 24, 7, 2010, 1193-1200, DOI: 10.1016/j.conbuildmat.2009.12.021
Google Scholar
Xu T., Wang H., Li Z., Zhao Y.: Evaluation of permanent deformation of asphalt mixtures using different laboratory performance tests. Construction and Building Materials, 53, 2014, 561-567, DOI: 10.1016/j.conbuildmat.2013.12.015
Google Scholar
Dias J.F., Picado-Santos L., Capităo S.: Mechanical performance of dry process fine crumb rubber asphalt mixtures placed on the Portuguese road network. Construction and Building Materials, 73, 2014, 247-254, DOI: 10.1016/j.conbuildmat.2014.09.110
Google Scholar
Gajewski M., Horodecka R.: Rheological properties of road bitumens modified by natural asphalt. Roads and Bridges - Drogi i Mosty, 17, 2, 2018, 93-109, DOI: 10.7409/rabdim.018.006
Google Scholar
Schwartz C.W.: Evaluation of the Witczak dynamic modulus prediction model. Proceedings of the 84th Annual Meeting of the Transportation Research Board, Washington, DC, 2005, No. 05-2112
Google Scholar
Yao B., Cheng G., Wang X., Cheng C.: Characterization of the stiffness of asphalt surfacing materials on orthotropic steel bridge decks using dynamic modulus test and flexural beam test. Construction and Building Materials, 44, 2013, 200-206, DOI: 10.1016/j.conbuildmat.2013.03.037
Google Scholar
Apeagyei A.K.: Rutting as a Function of Dynamic Modulus and Gradation. Journal of Materials in Civil Engineering, 23, 9, 2011, 1302-1310, DOI: 10.1061/(ASCE)MT.1943-5533.0000309
Google Scholar
Christensen D.W., Anderson D.A.: Interpretation of dynamic mechanical test data for paving grade asphalt cements (with discussion). Journal of the Association of Asphalt Paving Technologists, 61, 1992, 67-116
Google Scholar
Pellinen T., Witczak M.: Stress dependent master curve construction for dynamic (complex) modulus (with discussion). Journal of the Association of Asphalt Paving Technologists, 71, 2002, 281-309, DOI: 10.1061/40709(257)6
Google Scholar
Witczak M., Bari J.: Development of a master curve (E*) database for lime modified asphaltic mixtures. Arizona State University Research Report, Tempe, AZ, 2004
Google Scholar
Apeagyei A.K., Diefenderfer B.K., Diefenderfer S.D.: Development of dynamic modulus master curves for hot-mix asphalt with abbreviated testing temperatures. International Journal of Pavement Engineering, 13, 2, 2012, 98-109, DOI: 10.1080/10298436.2011.566612
Google Scholar
Kim Y., Lee H.D., Heitzman M.: Dynamic modulus and repeated load tests of cold in-place recycling mixtures using foamed asphalt. Journal of Materials in Civil Engineering, 21, 6, 2009, 279-285, DOI: 10.1061/(ASCE)0899-1561(2009)21:6(279)
Google Scholar
Coffey S., DuBois E., Mehta Y., Nolan A., Purdy C.: Determining the impact of degree of blending and quality of reclaimed asphalt pavement on predicted pavement performance using pavement ME design. Construction and Building Materials, 48, 2013, 473-478, DOI: 10.1016/j.conbuildmat.2013.06.012
Google Scholar
Garcia G., Thompson M.: HMA dynamic modulus predictive models - a review. Research Report FHWA-ICT-07-005, Illinois Center for Transportation, 2007, 101p
Google Scholar
Fakhri M., Ghanizadeh A.R.: An experimental study on the effect of loading history parameters on the resilient modulus of conventional and SBS-modified asphalt mixes. Construction and Building Materials, 53, 2014, 284-293, DOI: 10.1016/j.conbuildmat.2013.11.091
Google Scholar
Yildiz M., Kokini J.: Determination of Williams-Landel-Ferry constants for a food polymer system: effect of water activity and moisture content. Journal of Rheology, 45, 4, 2001, 903-912, DOI: 10.1122/1.1380425
Google Scholar
Yusoff N.I.M., Chailleux E., Airey G.D.: A comparative study of the influence of shift factor equations on master curve construction. International Journal of Pavement Research and Technology, 4, 6, 2011, 324-336
Google Scholar
Wang H., Zhan S., Liu G.: The effects of asphalt migration on the dynamic modulus of asphalt mixture. Applied Sciences, 9, 13, 2019, 2747, (17p), DOI: 10.3390/app9132747
Google Scholar
AS2008-1997 Australian Standard: Residual bitumen for pavements. Standards Association of Australia, 1997
Google Scholar
Karami M., Nikraz H.: Using Advanced Materials of Granular BRA Modifier Binder to Improve the Flexural Fatigue Performance of Asphalt Mixtures. Procedia Engineering, 125, 2015, 452-460, DOI: 10.1016/j.proeng.2015.11.120
Google Scholar
Karami M., Nikraz H., Sebayang S., Irianti L.: Laboratory experiment on resilient modulus of BRA modified asphalt mixtures. International Journal of Pavement Research and Technology, 11, 12018, 38-46, DOI: 10.1016/j.ijprt.2017.08.005
Google Scholar
Test method WA 730.1-2011 Bitumen content and particle size distribution of asphalt and stabilised soil: centrifuge method. Main Roads Western Australia, 2011, 4p
Google Scholar
Specification 504 Asphalt Wearing Course, Main Road Western Australia, 2010
Google Scholar
Australian Standard AS 2891.13.1-1995 Methods of sampling and testing asphalt - Methods 13.1: Determination of resilient modulus of asphalt - Indirect tensile method
Google Scholar
Harvey J., Monismith C.L.: Effects of laboratory asphalt concrete specimen preparation variables on fatigue and permanent deformation test results using strategic highway research program a-003a proposed testing equipment. Transportation Research Record, 1417, 1993, 38-48
Google Scholar
Mogawer W.S., Austerman A.J., Daniel J.S., Zhou F., Bennert T.: Evaluation of the effects of hot mix asphalt density on mixture fatigue performance, rutting performance and MEPDG distress predictions. International Journal of Pavement Engineering, 12, 2, 2011, 161-175, DOI: 10.1080/10298436.2010.546857
Google Scholar
Hartman A.M., Gilchrist M.D., Walsh G.: Effect of Mixture Compaction on Indirect Tensile Stiffness and Fatigue. Journal of Transportation Engineering, 127, 5, 2001, 0370-0378
Google Scholar
Walubita L.F., Faruk A.N., Das G., Tanvir H.A., Zhang J., Scullion T.: The overlay tester: a sensitivity study to improve repeatability and minimize variability in the test results. Texas Transportation Institute, FHWA/TX-12/0-6607-1, Texas, USA, 2012
Google Scholar
Whiteoak D.: The shell bitumen handbook. 4th edition, Shell Bitumen, Riversdale House, Chertsey, UK, 1990
Google Scholar
Somé S.C., Fredj M.A., Nguyen M.L., Feeser A., Pavoine A.: Multi-parametric characterization of mode I fracture toughness of asphalt concrete: Influence of void and RA contents, binder and aggregate types. International Journal of Pavement Research and Technology, 11, 3, 2018, 274-284, DOI: 10.1016/j.ijprt.2017.10.004
Google Scholar
de Mello L.G.R., de Farias M.M., Kaloush K.E.: Using damage theory to analyze fatigue of asphalt mixtures on flexural tests. International Journal of Pavement Research and Technology, 11, 6, 2018, 617-626, DOI: 10.1016/j.ijprt.2018.02.003
Google Scholar
Affandy F.: The performance of bituminous mixes using Indonesia natural asphalt. Proceedings of the 25 Australian Road Research Board (ARRB) Conference ”Shaping the future: Linking policy, research and outcomes”, Perth, Western Australia, 2012, 12p
Google Scholar