Wang Z., Xiao Y., Aminu U.F., He Q., Li Y., Li W.: Prediction of resilient modulus and critical dynamic stress of recycled aggregates: Experimental study and machine learning methods. Transportation Geotechnics, 49, 8, 2024, Article ID: 101363, DOI: 10.1016/j.trgeo.2024.101363
Google Scholar
Pevere A., Mouillet V., Boulange L., Gaudefroy V.: Air emissions contribution to complete environmental assessment of multi-recycled road materials incorporating reclaimed bituminous pavement for a better resource management. Resources, Conservation and Recycling, 212, 2025, Article ID: 108003, DOI: 10.1016/j.resconrec.2024.108003
Google Scholar
Kukiełka J.: Recykling głęboki na zimno nawierzchni asfaltowych dróg samorządowych. Materiały budowlane, 12, 508, 2014, 11-13, DOI: 10.15199/33.2014.12.03
Google Scholar
Kasulanati M.L., Pancharathi R.K.: Optimizing multi-recycled concrete for sustainability: Aggregate gradation, surface treatment methods and life cycle impact assessment. Construction and Building Materials, 449, 2024, Article ID: 138510, DOI: 10.1016/j.conbuildmat.2024.138510
Google Scholar
Hu B., Weng Y., Zhou Y., Li W., Huang X., Guo M.: Overcoming the weakness of recycled GFRP aggregate concrete: FRP confining and its design method. Construction and Building Materials, 445, 2024, Article ID: 137780, DOI: 10.1016/j.conbuildmat.2024.137780
Google Scholar
Martinez-Arguelles G., Giustozzi F., Crispino M., Flintsch G.W.: Investigating physical and rheological properties of foamed bitumen. Construction and Building Materials, 72, 2014, 423-433, DOI: 10.1016/j.conbuildmat.2014.09.024
Google Scholar
Maghool F., Arulrajah A., Ghorbani B., Horpibulsuk S.: Strength and permanent deformation properties of demolition wastes, glass, and plastics stabilized with foamed bitumen for pavement bases. Construction and Building Materials, 320, 2022, Article ID: 126108, DOI: 10.1016/j.conbuildmat.2021.126108
Google Scholar
Iwański M., Mazurek G., Buczyński P., Zapała-Sławeta J.: Multidimensional analysis of foaming process impact on 50/70 bitumen Ageing. Construction and Building Materials, 266, Part B, 2021, Article ID: 121231, DOI: 10.1016/j.conbuildmat.2020.121231
Google Scholar
Mondal P.G., Kuna K.K.: Mix design considerations for foamed bitumen stabilized materials: A review. Construction and Building Materials, 326, 2022, Article ID: 126783, DOI: 10.1016/j.conbuildmat.2022.126783
Google Scholar
Motevalizadeh S.M., Mollenhauer K.: Use of multivariate clustering analysis to investigate the physicochemical interactions in bitumen mastics using micromechanical modeling and FTIR spectroscopy. Construction and Building Materials, 448, 2024, Article ID: 138230, DOI: 10.1016/j.conbuildmat.2024.138230
Google Scholar
Iwański M., Mazurek G., Buczyński P., Iwański M.M.: Effects of hydraulic binder composition on the rheological characteristics of recycled mixtures with foamed bitumen for full depth reclamation. Construction and Building Materials, 330, 2022, Article ID: 127274, DOI: 10.1016/j.conbuildmat.2022.127274
Google Scholar
Pitawala S., Sounthararajah A., Bodin D., Kodikara J.: Advanced characterisation of flexural fatigue performance of foamed bitumen stabilised pavement materials. Construction and Building Materials, 341, 2022, Article ID 127881, DOI: 10.1016/j.conbuildmat.2022.127881
Google Scholar
Cheng Z., Kong F., Gao X.: Evaluating dynamic modulus of cold in-place recycling mixture with foamed bitumen using field core samples. Construction and Building Materials, 448, 2024, Article ID: 138227, DOI: 10.1016/j.conbuildmat.2024.138227
Google Scholar
Jahan H., Kar S.S., Swamy A.K.: Performance of foamed bituminous mixtures for the construction of pavements: A review. Construction and Building Materials, 453, 2024, Article ID: 139024, DOI: 10.1016/j.conbuildmat.2024.139024
Google Scholar
Chomicz-Kowalska A., Maciejewski K.: Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements. Journal of Cleaner Production, 258, 2020, Article ID: 120517, DOI: 10.1016/j.jclepro.2020.120517
Google Scholar
Hashemian L., Kavussi A., Aboalmaali H.H.: Application of foam bitumen in cold recycling and hydrated lime in airport pavement strengthening. Case Studies in Construction Materials, 1, 2014, 164-171, DOI: 10.1016/j.cscm.2014.08.002
Google Scholar
Oliveira J., Silva H., Martins A., Correia E., Pragosa J., Mendes P.: A pavement full-depth reclamation case study using cold in situ recycling with foamed bitumen. Transportation Research Procedia, 72, 2023, 4183-4190, DOI: 10.1016/j.trpro.2023.11.356
Google Scholar
Iwański M., Chomicz-Kowalska A., Maciejewski K., Iwański M.M., Ramiączek P., Stępień J.: Evaluation of mixture grading and binder composition effects on the characteristics of cold-recycled mixtures with foamed bitumen. Transportation Research Procedia, 72, 2023, 2776-2783, DOI: 10.1016/j.trpro.2023.11.820
Google Scholar
Skotnicki Ł.Z., Kuźniewski J., Szydło A.: Research on the properties of mineral-cement emulsion mixtures using recycled road pavement materials. Materials, 14, 3, 2021, Article ID: 563, DOI: 10.3390/ma14030563
Google Scholar
Abreu L., Oliveira J., Silva H., Silva C., Palha D., Fonseca P.: Foamed bitumen: an alternative way of producing asphalt mixtures. Ciência & Tecnologia dos Materiais, 29, 1, 2017, e198-e203, DOI: 10.1016/j.ctmat.2016.07.004
Google Scholar
Cuadri A.A., Perez-Moreno S., Altamar C.L., Navarro F.J., Bolívar J.P.: Phosphogypsum as additive for foamed bitumen manufacturing used in asphalt paving. Journal of Cleaner Production, 283, 2021, Article ID: 124661, DOI: 10.1016/j.jclepro.2020.124661
Google Scholar
Fang L., Zhou J., Yang Z., Yuan Q., Que Y.: Interaction between cement and asphalt emulsion and its influences on asphalt emulsion demulsification, cement hydration and rheology. Construction and Building Materials, 329, 2022, Article ID: 127220, DOI: 10.1016/j.conbuildmat.2022.127220
Google Scholar
Lu D., Jiang X., Tan Z., Yin B., Leng Z., Zhong J.: Enhancing sustainability in pavement Engineering: A-state-of-the-art review of cement asphalt emulsion mixtures. Cleaner Materials, 9, 2023, Article ID: 100204, DOI: 10.1016/j.clema.2023.100204
Google Scholar
Dołżycki B., Jaczewski M., Szydlowski C.: The long-term properties of mineral-cement-emulsion mixtures. Construction and Building Materials, 156, 2017, 799-808, DOI: 10.1016/j.conbuildmat.2017.09.032
Google Scholar
Dołżycki B., Jaczewski M., Szydłowski C.: The influence of binding agents on stiffness of mineral-cementemulsion mixtures. Procedia Engineering, 172, 2017, 239-246, DOI: 10.1016/j.proeng.2017.02.103
Google Scholar
Dołżycki B., Jaskuła P.: Review and evaluation of cold recycling with bitumen emulsion and cement for rehabilitation of old pavements. Journal of Traffic and Transportation Engineering (English Edition), 6, 4, 2019, 311-323, DOI: 10.1016/j.jtte.2019.02.002
Google Scholar
Fang L., Zhou J., Yang Z., Yuan Q., Que Y.: Interaction between cement and asphalt emulsion and its influences on asphalt emulsion demulsification, cement hydration and rheology. Construction and Building Materials, 329, 2022, Article ID: 127220, DOI: 10.1016/j.conbuildmat.2022.127220
Google Scholar
Yang W., Ouyang J., Meng Y., Han B., Sha Y.: Effect of curing and compaction on volumetric and mechanical properties of cold-recycled mixture with asphalt emulsion under different cement contents. Construction and Building Materials, 297, 2021, Article ID: 123699, DOI: 10.1016/j.conbuildmat.2021.123699
Google Scholar
Deng Z., Mahmood A.H., Dong W., Sheng D., Lin X.: Piezoresistive performance of self-sensing bitumen emulsion-cement mortar with multi-walled carbon nanotubes. Cement and Concrete Composites, 153, 2024, Article ID: 105718, DOI: 10.1016/j.cemconcomp.2024.105718
Google Scholar
Chen T., Luan Y., Ma T., Zhu J., Huang X., Ma S.: Mechanical and microstructural characteristics of different interfaces in cold recycled mixture containing cement and asphalt emulsion. Journal of Cleaner Production, 258, 2020, Article ID: 120674, DOI: 10.1016/j.jclepro.2020.120674
Google Scholar
Kuźniewski J., Skotnicki Ł.: Properties of mineral-cement emulsion mixtures based on concrete aggregates from recycling. Case Studies in Construction Materials, 12, 2019, Article ID: e00309, DOI: 10.1016/j.cscm.2019.e00309
Google Scholar
Kukiełka J., Bańkowski W.: The experimental study of mineral-cement-emulsion mixtures with rubber powder addition. Construction and Building Materials, 226, 2019, 759-766, DOI: 10.1016/j.conbuildmat.2019.07.276
Google Scholar
Król J., Konieczna K., Liphardt A., Radziszewski P., Kowalski K., Pokorski P., Sarnowski M., Kędzierska A.: Recykling nawierzchni bardziej efektywny z innowacyjnym asfaltem. Nowoczesne Budownictwo Inżynieryjne, 3, 2022, 52-54, https://nbi.com.pl/content/uploads/assets/NBI-pdf/2022/3_102_2022/PDF/9-Recykling-nawierzchni.pdf (19.12.2024)
Google Scholar
Skotnicki Ł., Kuźniewski J.: Cracking resistance of recycled mineral-cement-emulsion mixtures. Roads and Bridges – Drogi i Mosty, 22, 1, 2023, 19-39, DOI: 10.7409/rabdim.023.002
Google Scholar
Czapik P., Szczur P.: Influence of cement by-pass dust on the properties of multi-component binders with granulated blast furnace slag. XII Konferencja „Dni betonu”, Wisła, 2023, http://www.dnibetonu.com/wp-content/pdfs/2023/Czapik_Szczur.pdf (19.12.2024)
Google Scholar
Czapik P., Zapała-Sławeta J., Owsiak Z., Stępień P.: Hydration of Cement By-Pass Dust. Construction and Building Materials, 231, 2020, Article ID: 117139, DOI: 10.1016/j.conbuildmat.2019.117139
Google Scholar
Mazurek G., Buczyński P., Iwański M., Horodecka R.: Influence of a three-component hydraulic binder on the properties of recycled base course with foamed bitumen and bituminous emulsion: a field investigation. Roads and Bridges – Drogi i Mosty, 21, 4, 2022, 309-329, DOI: 10.7409/rabdim.022.018
Google Scholar
PN-EN 12697-26+A1:2023-03 Bituminous mixtures – Test methods – Part 26: Stiffness
Google Scholar
PN-EN 12697-24:2018-08 Bituminous mixtures – Test methods – Part 24: Resistance to fatigue
Google Scholar
Poliaček I.: Vplyv teplotného režimu vozovky na jej správanie sa a návrh. Slovenská Vysoká Škola Technická v Bratislave, Cestné Vedeckovýskumne Laboratórium, Bratislava, 1975 (available from the authors)
Google Scholar
Motamedi Z., Bansal T., Mattsson H., Åström J., Casselgren J.: A dynamic boundary condition finite difference model for predicting pavement profile temperatures: Development and validation. Transportation Engineering, 18, 2024, Article ID: 100287, DOI: 10.1016/j.treng.2024.100287
Google Scholar
Huber G.A., Kennedy T.W., Anderson M.: The Superpave Mix Design Manual for New Construction and Overlays. Strategic Highway Research Program SHRP-A-407, Washington, DC, 1994, https://onlinepubs.trb.org/onlinepubs/shrp/shrp-a-407.pdf (19.12.2024)
Google Scholar
Bańkowski W., Gajewski M., Gajewska B.: Assessment of the Design Life of High Modulus Asphalt Concrete Pavements and Propositions of Typical Structures. In: Pereira P., Pais J. (eds), Proceedings of the 10th International Conference on Maintenance and Rehabilitation of Pavements “MAIREPAV 2024”. Lecture Notes in Civil Engineering, 522, 2024, 559-570, DOI: 10.1007/978-3-031-63588-5_53
Google Scholar
Mackiewicz P., Kuźniewski J., Skotnicki Ł.Z., Szydło A.: Innowacyjna technologia wykorzystująca optymalizację środka wiążącego przeznaczona do technologii recyklingu głębokiego na zimno konstrukcji nawierzchni zapewniająca jej trwałość eksploatacyjną: wytyczne w zakresie technologii recyklingu głębokiego na zimno z emulsją asfaltową oraz dedykowanym spoiwem (MSEA). Politechnika Wrocławska, Raporty Wydziału Budownictwa Lądowego i Wodnego Politechniki Wrocławskiej, SPR, 42, Wrocław 2021 (available from the authors)
Google Scholar
Iwański M., Mazurek G., Buczyński P., Szydło A., Mackiewicz P., Skotnicki Ł., Kuźniewski J.: Innowacyjna technologia wykorzystująca optymalizację środka wiążącego przeznaczona do technologii recyklingu głębokiego na zimno konstrukcji nawierzchni zapewniająca jej trwałość eksploatacyjną: wytyczne w zakresie technologii recyklingu głębokiego na zimno z asfaltem spienionym oraz dedykowanym spoiwem (MSAS). Opracowanie w ramach projektu TECHMATSTRATEG1/349326/9/NCBR/2017 (available from the authors)
Google Scholar
Iwański M., Mazurek G., Buczyński P.: Analysis of the deformation of road surface construction based on monitoring climatic factors. Structure and Environment, 16, 3, 2024, 141-147, Article ID: el 013, DOI: 10.30540/sae-2024-013
Google Scholar