Gandomi A.H., Alavi A.H., Mirzahosseini M.R., Nejad F.M.: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. Journal of Materials in Civil Engineering, 23, 2011, 248-263, DOI: 10.1061/(ASCE)MT.1943-5533.0000154
Google Scholar
Alavi A.H., Ameri M., Gandomi A.H., Mirzahosseini M.R.: Formulation of flow number of asphalt mixes using a hybrid computational method. Construction and Building Materials, 25, 2011, 1338-1355, DOI: 10.1016/j.conbuildmat.2010.09.010
Google Scholar
Dias J.L.F., Picado-Santos L., Capitão S.: Mechanical performance of dry process fine crumb rubber asphalt mixtures placed on the Portuguese road network. Construction and Building Materials, 73, 2014, 247-254, DOI: 10.1016/j.conbuildmat.2014.09.110
Google Scholar
Pasandín A., Pérez I.: Overview of bituminous mixtures made with recycled concrete aggregates. Construction and Building Materials, 74, 2015, 151-161, DOI: 10.1016/j.conbuildmat.2014.10.035
Google Scholar
Masad E., Tashman L., Little D., Zbib H.: Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics. Mechanics of Materials, 37, 12, 2005, 1242-1256, DOI: 10.1016/j.mechmat.2005.06.003
Google Scholar
Giunta M., Pisano A.A.: One dimensional viscoelastoplastic constitutive model for asphalt concrete. Multidiscipline Modeling in Materials and Structures, 2, 2, 2006, 247-264, DOI: 10.1163/157361106776240761
Google Scholar
Erkens S.M.J.G., Liu X., Scarpas A.: 3D finite element model for asphalt concrete response simulation. International Journal of Geomechanics, 2, 3, 2002, 305-330, DOI: 10.1061/(ASCE)1532-3641(2002)2:3(305)
Google Scholar
Costanzi M., Cebon D.: Generalized phenomenological model for the viscoelasticity of idealized asphalts. Journal of Materials in Civil Engineering, 26, 3, 2014, 399-410, DOI: 10.1061/(ASCE)MT.1943-5533.0000842
Google Scholar
Collop A.C., McDowell G.R., Lee Y.: Use of the distinct element method to model the deformation behavior of an idealized asphalt mixture. International Journal of Pavement Engineering, 5, 1, 2004, 1-7, DOI: 10.1080/10298430410001709164
Google Scholar
Abbas A., Masad E., Papagiannakis T., Harman T.: Micromechanical modelling of the viscoelastic behavior of asphalt mixtures using the discrete-element method. International Journal of Geomechanics, 7, 2, 2007, 131-139, DOI: 10.1061/(ASCE)1532-3641(2007)7:2(131)
Google Scholar
Dondi G., Simone A., Vignali V., Manganelli G.: Numerical and experimental study of granular mixes for asphalts. Powder Technology, 232, 2012, 31-40, DOI: 10.1016/j.powtec.2012.07.057
Google Scholar
Majidifard H., Jahangiri B., Buttlar W.G., Alavi A.H.: New machine learning-based prediction models for fracture energy of asphalt mixtures. Measurement, 135, 2019, 438-451, DOI: 10.1016/j.measurement.2018.11.081
Google Scholar
Ghafari S., Ehsani M., Nejad F.M.: Prediction of low-temperature fracture resistance curves of unmodified and crumb rubber modified hot mix asphalt mixtures using a machine learning approach. Construction and Building Materials, 314, 2022, Article ID: 125332. DOI: 10.1016/j.conbuildmat.2021.125332
Google Scholar
Friedman J., Hastie T., Tibshirani R.: Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33, 1, 2008, 1-22, DOI: 10.18637/jss.v033.i01
Google Scholar
Li Z., Liu F., Yang W., Peng S., Zhou J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 33, 12, 2021, 6999-7019, DOI: 10.1109/TNNLS.2021.3084827
Google Scholar
Aizenbud Y., Sober B.: Approximating the span of principal components via iterative least-squares. Applied and Computational Harmonic Analysis (ACHA), 63, 2023, 84-92, DOI: 10.1016/j.acha.2022.11.006
Google Scholar
Meng K., Gai Y., Wang X., Yao M., Sun X.: Transfer learning for high-dimensional linear regression via the elastic net. Knowledge-Based Systems, 304, 2024, Article ID: 112525, DOI: 10.1016/j.knosys.2024.112525
Google Scholar
Seno M.E., Zeini H.A., Imran H., Noori M., Henedy S.N., Ghazaly N.M.: Advancing in creep index of soil prediction: A groundbreaking machine learning approach with Multivariate Adaptive Regression Splines. Results in Materials, 24, 2024, Article ID: 100641, DOI: 10.1016/j.rinma.2024.100641
Google Scholar
Rondinella F., Oreto C., Abbondati F., Baldo N.: Laboratory Investigation and Machine Learning Modeling of Road Pavement Asphalt Mixtures Prepared with Construction and Demolition Waste and RAP. Sustainability, 15, 23, 2023, Article ID: 16337, DOI: 10.3390/su152316337
Google Scholar
Rondinella F., Daneluz F., Vacková P., Valentin J., Baldo N.: Volumetric Properties and Stiffness Modulus of Asphalt Concrete Mixtures Made with Selected Quarry Fillers: Experimental Investigation and Machine Learning Prediction. Materials, 16, 3, 2023, Article ID: 1017, DOI: 10.3390/ma16031017
Google Scholar
Liu J., Liu F., Zheng C., Fanijo E.O., Wang L.: Improving asphalt mix design considering international roughness index of asphalt pavement predicted using autoencoders and machine learning. Construction and Building Materials, 360, 2022, Article ID: 129439, DOI: 10.1016/j.conbuildmat.2022.129439
Google Scholar
Pattanaik M.L., Kumar S., Choudhary R., Agarwal M., Kumar B.: Predicting the abrasion loss of open-graded friction course mixes with EAF steel slag aggregates using machine learning algorithms. Construction and Building Materials, 321, 2022, Article ID: 126408, DOI: 10.1016/j.conbuildmat.2022.126408
Google Scholar
Tiwari N., Rondinella F., Satyam N., Baldo N.: Alternative Fillers in Asphalt Concrete Mixtures: Laboratory Investigation and Machine Learning Modeling towards Mechanical Performance Prediction. Materials, 16, 2, 2023, Article ID: 807, DOI: 10.3390/ma16020807
Google Scholar
Wang J., Zhang R., Wang R., Bahia H., Huang W., Wang D., Cai W.: Prediction of the fundamental viscoelasticity of asphalt mixtures using ML algorithms. Construction and Building Materials, 442, 2024, Article ID: 137573. DOI: 10.1016/j.conbuildmat.2024.137573
Google Scholar
SIST EN 12591: 2009 Bitumen and Bituminous Binders – Specifications for Paving Grade Bitumens. European Committee for Standardization: Brussels, Belgium
Google Scholar
ČSN 73 6121 (736121): 2019 Stavba Vozovek – Hutněné Asfaltové Vrstvy – Provádění a Kontrola Shody. Česká Technická Norma: Prague, Czech Republic
Google Scholar
SIST EN 12697: 2019 Part 26, Bituminous Mixtures – Test Methods for Hot Mix Asphalt-Stiffness. European Committee for Standardization: Brussels, Belgium
Google Scholar
James G., Witten D., Hastie T., Tibshirani R.: An Introduction to Statistical Learning with Applications in R. Springer: New York, NY, USA, 2013
Google Scholar
Dismuke C., Lindrooth R.: Ordinary least squares. Methods and designs for outcomes research, 93, 1, 2006, 93-104
Google Scholar
Melkumova L.E., Shatskikh S.Y.: Comparing Ridge and LASSO estimators for data analysis. Procedia Engineering, 201, 2017, 746-755, DOI: 10.1016/j.proeng.2017.09.615
Google Scholar
Heiberger R.M., Neuwirth E.: Polynomial regression. R Through Excel: A Spreadsheet Interface for Statistics, Data Analysis, and Graphics, 2009, 269-284, DOI: 10.1007/978-1-4419-0052-4
Google Scholar
McCulloch W.S., Pitts W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 1943, 115-133, DOI: 10.1007/BF02478259
Google Scholar
Moayedi H., Mosallanezhad M., Rashid A.S.A., Jusoh W.A.W., Muazu M.A.: A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: Theory and applications. Neural Computing and Applications, 32, 2020, 495-518, DOI: 10.1007/s00521-019-04109-9
Google Scholar
Rondinella F., Oreto C., Abbondati F., Baldo N.: A Deep Neural Network Approach towards Performance Prediction of Bituminous Mixtures Produced Using Secondary Raw Materials. Coatings, 14, 8, 2024, Article ID: 922, DOI: 10.3390/coatings14080922
Google Scholar
Berahas A.S., Nocedal J., Takác M.: A multi-batch L-BFGS method for machine learning. Advances in Neural Information Processing Systems, 29, 2016, 1055-1063, DOI: 10.48550/arXiv.1605.06049
Google Scholar
Rumelhart D.E., Hinton G.E., Williams R.J.: Learning representations by back-propagating errors. Nature, 323, 1986, 533-536, DOI: 10.1038/323533a0
Google Scholar
Kingma D.P., Ba J.: Adam: A Method for Stochastic Optimization. arXiv, 1412.6980, 2014, DOI: 10.48550/arXiv.1412.6980
Google Scholar
Kearns M., Valiant L.: Cryptographic limitations on learning boolean formulae and finite automata. Journal of the ACM (JACM), 41, 1, 1994, 67-95, DOI: 10.1145/174644.174647
Google Scholar
Al-Obeidat F., Spencer B., Alfandi O.: Consistently accurate forecasts of temperature within buildings from sensor data using ridge and lasso regression. Future Generation Computer Sys- tems, 110, 2020, 382-392, DOI: 10.1016/j.future.2018.02.035
Google Scholar
Rondinella F., Daneluz F., Hofko B., Baldo N.: Improved predictions of asphalt concretes’ dynamic modulus and phase angle using decision-tree based categorical boosting model. Construction and Building Materials, 400, 2023, Article ID: 132709, DOI: 10.1016/j.conbuildmat.2023.132709
Google Scholar