Roads and Bridges - Drogi i Mosty
13, 1, 2014, 33-48

New analytical solution of flow and heat refraction problem in multilayer pavement

Mirosław Graczyk Mail
Road and Bridge Research Institute, Warsaw
Józef Rafa Mail
Military University of Technology, Warsaw
Leszek Rafalski Mail
Road and Bridge Research Institute, Warsaw
Adam Zofka Mail
Road and Bridge Research Institute, Warsaw

Abstract

The paper covers a new analytical solution of a flow and refraction problem in a multilayer pavement. The solution includes conditions of internal and external exchange as well as cyclic temperature and heat flux changes. Solution of a problem of heat conduction in a multilayer system showed a significant influence of coefficients introduced by the authors on the temperature and thermal stresses field in structure of a multilayer pavement. The coefficients were: diffusivity, thermal matching of layers and thermal refraction of layers. It was found that solar radiation is very important climatic factor acting directly on the upper layer of pavement, causing an increase in temperatures and creation of an additional temperature gradient in a multilayer pavement. It is shown that temperature field in a multilayer pavement depends significantly on geometry of layers structure, thermal characteristics of upper and lower layers expressed by Biot and Fourier numbers, colour of a surface course, humidity, velocity of wind etc., which are expressed by value of an external heat transfer coefficient. Moreover, an original example of analysis of an influence of pavement layer and subgrade parameters as well as climatic conditions on the temperature field in three different pavement structures, is shown. Results of the presented analysis can be directly applied in roads and airstrips pavements design.

Keywords


Biot number, Fourier number, heat flow and refraction, multilayer pavement; refraction coefficient, thermal matching

Full Text:

PDF PDF

References


Moon P., Spencer D.E.: Field theory for engineers. D. Van Nostrand Company, Princeton USA, 1961

Southgate H.F.: An evaluation of temperature distribution of asphalt pavements and its relationship to pavement deflection. MSCE Thesis, University of Kentucky, Lexington, Kentucky, USA, 1968

Stubstad R.N., Baltzer S., Lukanen E.O., Ertman- Larsen H.J.: Prediction of AC mat temperature for routine load/deflection measurements. 4th International Conference on Bearing Capacity of Road and Airfields, Minnesota, USA, 1994

Lukanen E.O., Stubstad R.N., Briggs R.: Temperature prediction and adjustment factors for asphalt pavement. Report No FHWA-RD-98-085, Federal Highway Administration. McLean Virginia, USA, 2000

Sybilski D., Mirski K.: Zalecane lepiszcza asfaltowe w warstwach nawierzchni w Polsce z uwzględnieniem warunków klimatycznych i obciążenia ruchem. Prace IBDiM, 1-2/2000, 103-157

Park D.Y., Buch N., Chatti K.: Development of effective layer temperature prediction model and temperature correction using FWD deflections. Transportation Research Record 1764, Washington 2001

Mieczkowski P.: Model fizyczny obliczania temperatury górnej warstwy nawierzchni asfaltowej. Drogownictwo, LVI, 8, 2001, 230-235

Hermansson A.: Simulation of asphalt concrete pavement temperatures for use with FWD. Road Materials and Pavement Design, 3, 3, 2002, 281-297

Rafalski L.: Podłoże nawierzchni drogowej. Inżynieria Morska i Geotechnika, 3, 2009, 190-193

Wistuba M.: Determining design temperatures for asphalt pavements. Road Materials and Pavement Design, 4, 3, 2003, 341-349

Wistuba M., Blab R., Litzka J.: Oberbauverstarkung Von Asphaltstrassen. Methodenüberblick und Ableitung von Klimadaten für die analytische Bemessung. TU-Wien, 2004

Górszczyk J., Grzybowska W.: Analizy termiczne asfaltowej nawierzchni drogowej z wykorzystaniem MES. Roads and Bridges - Drogi i Mosty, 10, 4, 2011, 7-30

Wang D., Roesler J.R., Guo D.Z.: Analytical Approach to Predicting Temperature Fields in Multilayered Pavement Systems. Journal of Engineering Mechanics, 135, 4, 2009, 334-344

Hall M.R., Dawson A.R., Grenfell J., Isola R.: Influence of the Thermophysical Properties of Pavement Materials on the Evolution of Temperature Depth Profiles in Different Climatic Regions. Journal of Materials in Civil Engineering, 24, 1, 2012, 32-47

Bryant P., Denneman E.: Improved Design Procedures for Asphalt Pavements: Pavement Temperature and Load Frequency Estimation. Austroads Technical Reports AP - T248 - 13, September 2013, Sydney, Australia, 2013

Graczyk M., Rafa J.: Wybrane aspekty zachowania się nawierzchni podatnych w modelach materiałów termolepkosprężystych. Roads and Bridges - Drogi i Mosty, 9, 2, 2010, 5-15

Graczyk M.: Nośność konstrukcji nawierzchni wielowarstwowych w krajowych warunkach klimatycznych. Studia i Materiały, Zeszyt 63, IBDiM, Warszawa, 2010

Nowacki W.: Termosprężystość. PWN, Warszawa, 1970

Piskorek A.: Fourier and Laplace’a transform and its applications. PWN, Warsaw, 1991


New analytical solution of flow and heat refraction problem in multilayer pavement

  
Graczyk, Mirosław et al. New analytical solution of flow and heat refraction problem in multilayer pavement. Roads and Bridges - Drogi i Mosty, [S.l.], v. 13, n. 1, p. 33-48 , feb. 2014. ISSN 2449-769X. Available at: <>. Date accessed: 03 Jul. 2020. doi:http://dx.doi.org/10.7409/rabdim.014.003.