Towards net zero – A decarbonization roadmap for the asphalt industry. European Asphalt Pavement Association (EAPA), Bruksela, 2024, https://horizoneuropencpportal.eu/sites/default/files/2025-01/eapa-towards-net-zero-2024.pdf (available: 10.08.2025)
Google Scholar
Shacat J., Willis R., Ciavola B.: The carbon footprint of asphalt pavements. The Road Forward, SIP-109, National Asphalt Pavement Association, Greenbelt, MD, USA, 2024, https://www.asphaltpavement.org/uploads/documents/Climate/NAPA-SIP109-TheCarbonFootprintOfAsphaltPavements-March2024.pdf (available: 10.08.2025)
Google Scholar
Fetting C.: The European green deal. European Sustainable Development Network (ESDN), ESDN Report, Vienna, 2020, https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf (available 10.08.2025)
Google Scholar
Li K., Yan X., Pu J., Wang Y., Chen Y., Fang K., Hu J., Yang Y.: Quantitative evaluation on the energy saving and emission reduction characteristics of warm mix asphalt mixtures. Construction and Building Materials, 407, 2023, Article ID: 133465, DOI: 10.1016/j.conbuildmat.2023.133465
Google Scholar
Lee H., Nguyen L.N., Sturlini E., Kim Y.I.: Cool mix asphalt – redefining warm mix asphalt with implementations in Korea, Italy and Vietnam. Infrastructures, 10, 1, 2025, Article ID: 24, DOI: 10.3390/infrastructures10010024
Google Scholar
Malinowski S., Pacholak R., Kołodziej K., Woszuk A.: Application of NaP1 zeolite modified with silanes in bitumen foaming process. Materials, 17, 23, 2024, Article ID: 5902, DOI: 10.3390/ma17235902
Google Scholar
Maciejewski K., Chomicz-Kowalska A., Remisova E.: Effects of water-foaming and liquid warm mix additive on the properties and chemical composition of asphalt binders in terms of short-term ageing process. Construction and Building Materials, 341, 2022, Article ID: 127756, DOI: 10.1016/j.conbuildmat.2022.127756
Google Scholar
Chomicz-Kowalska A., Maciejewski K., Iwański M.M.: Study of the simultaneous utilization of mechanical water foaming and zeolites and their effects on the properties of warm mix asphalt concrete. Materials, 13, 2, 2020, Article ID: 357, DOI: 10.3390/ma13020357
Google Scholar
Bueche N., Probst S., Eskandarsefat S.: Warm-mix asphalt containing reclaimed asphalt pavement: A case study in Switzerland. Infrastructures, 9, 5, 2024, Article ID: 79, DOI: 10.3390/infrastructures9050079
Google Scholar
Zhang Z., Fang Y., Yang J., Li X.: A comprehensive review of bio-oil, bio-binder and bio-asphalt materials: Their source, composition, preparation and performance. Journal of Traffic and Transportation Engineering (English Edition), 9, 2, 2022, 151-166, DOI: 10.1016/j.jtte.2022.01.003
Google Scholar
Iwański M., Chomicz-Kowalska A., Maciejewski K., Iwański M.M., Radziszewski P., Liphardt A., Król J.B., Sarnowski M., Kowalski K.J., Pokorski P.: Warm mix asphalt binder utilizing water foaming and fluxing using bio-derived agent. Materials, 15, 24, 2022, Article ID: 8873, DOI: 10.3390/ma15248873
Google Scholar
End-of-life tire recycling and collection statistics. European Tyre and Rubber Manufacturers’ Association (ETRMA), Bruksela, 2019, https://www.etrma.org/wp-content/uploads/2021/05/20210511_ETRMA_PRESS-RELEASE_ELT-2019.pdf (available: 10.08.2025)
Google Scholar
Landi D., Marconi M., Meo I., Germani M.: Reuse scenarios of tires textile fibers: An environmental evaluation. Procedia Manufacturing, 21, 2018, 329-336, DOI: 10.1016/j.promfg.2018.02.128
Google Scholar
Bianco I., Panepinto D., Zanetti M.: End-of-life tyres: Comparative life cycle assessment of treatment scenarios. Applied Sciences, 11, 8, 2021, Article ID: 3599, DOI: 10.3390/app11083599
Google Scholar
Landi D., Marconi M., Bocci E., Germani M.: Comparative life cycle assessment of standard, cellulose-reinforced and end-of-life tires fiber-reinforced hot mix asphalt mixtures. Journal of Cleaner Production, 248, 2020, Article ID: 119295, DOI: 10.1016/j.jclepro.2019.119295
Google Scholar
Chowdhury A., Button J.W., Bhasin A.: Fibers from recycled tires as reinforcement in hot mix asphalt. College Station, Report No. SWUTC/06/167453-1, TX, USA, 2006, http://swutc.tamu.edu/publications/technicalreports/167453-1.pdf (available: 10.08.2025)
Google Scholar
Putman B.J., Amirkhanian S.N.: Utilization of waste fibers in stone matrix asphalt mixtures. Resources, Conservation and Recycling, 42, 3, 2004, Article ID: 265274, DOI: 10.1016/j.resconrec.2004.04.005
Google Scholar
Pais J.C., Ferreira A., Santos C., Pereira P., Lo Presti D.: Preliminary studies to use textile fibers obtained from recycled tires to reinforce asphalt mixtures. Romanian Journal of Transport Infrastructure, 7, 2, 2018, 14-30, DOI: 10.2478/rjti-2018-0009
Google Scholar
Bocci E., Prosperi E.: Recycling of reclaimed fibers from end-of-life tires in hot mix asphalt. Journal of Traffic and Transportation Engineering (English Edition), 7, 5, 2020, 678-687, DOI: 10.1016/j.jtte.2019.09.006
Google Scholar
Valdes-Vidal G., Calabi-Floody A., Mignolet-Garrido C., Bravo-Espinoza C.: Enhancing fatigue resistance in asphalt mixtures with a novel additive derived from recycled polymeric fibers from end-of-life tyres (ELTs). Polymers, 16, 3, 2024, Article ID: 385, DOI: 10.3390/polym16030385
Google Scholar
Calabi-Floody A., Mignolet-Garrido C., Valdés-Vidal G.: Evaluation of the effects of textile fibre derived from end-of-life tyres (TFELT) on the rheological behaviour of asphalt binders. Construction and Building Materials, 360, 2022, Article ID: 129583, DOI: 10.1016/j.conbuildmat.2022.129583
Google Scholar
Sybilski D.: Zastosowanie odpadów gumowych w budownictwie drogowym. Przegląd Budowlany, 5, 2009, 37-44, https://www.przegladbudowlany.pl/2009/05/2009-05-pb-37-44 _sybilski.pdf (available in Polish: 10.08.2025)
Google Scholar
Jurczak R.: Nawierzchnia z dodatkiem gumy (i włókien) po 18 latach eksploatacji. Drogownictwo, 77, 2-3, 2022, 35-39, https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-58f379ae-d265-416c-a960-8fe410014714 (available in Polish: 10.08.2025)
Google Scholar
Chomicz-Kowalska A.: Laboratory testing of low temperature asphalt concrete produced in foamed bitumen technology with fiber reinforcement. Bulletin of the Polish Academy of Sciences Technical Sciences, 65, 6, 2017, 779-790, DOI: 10.1515/bpasts-2017-0086
Google Scholar
Zankowicz W., Zaprzalski P.: SMAPOL® otwiera nowe perspektywy poprawy trwałości nawierzchni asfaltowych. Drogowo-Mostowy.pl, 2024, https://drogowo-mostowy.pl/smapol-otwiera-nowe-perspektywy-poprawy-trwalosci-nawierzchni-asfaltowych/ (available in Polish: 10.08.2025)
Google Scholar
Kołodziej K., Bichajło L., Siwowski T.: Influence of composition and properties of mastic with natural asphalt on mastic asphalt mixture resistance to permanent deformation. Roads and Bridges – Drogi i Mosty, 20, 1, 2021, 57-73, DOI: 10.7409/rabdim.021.004
Google Scholar
Kong D., Wu S., Chen M., Zhao M., Shu B.: Characteristics of different types of basic oxygen furnace slag filler and its influence on properties of asphalt mastic. Materials, 12, 24, 2019, Article ID: 4034, DOI: 10.3390/ma12244034
Google Scholar
Zeng M., Wu C.: Effects of type and content of mineral filler on viscosity of asphalt mastic and mixing and compaction temperatures of asphalt mixture. Transportation Research Record, 2051, 1, 2008, 31-40, DOI: 10.3141/2051-05
Google Scholar
Ryś D., Jaskuła P., Szydłowski C.: Comprehensive temperature performance evaluation of asphalt mastics containing hydrated lime filler based on dynamic shear rheometer testing. Roads and Bridges – Drogi i Mosty, 23, 4, 2024, 355-373, DOI: 10.7409/rabdim.024.017
Google Scholar
WT-2 Nawierzchnie asfaltowe na drogach krajowych. Mieszanki mineralno-asfaltowe. Wymagania techniczne. Generalna Dyrekcja Dróg Krajowych i Autostrad (GDDKiA), Załącznik do zarządzenia nr 54 GDDKiA z dnia 08.11.2014, Warszawa, 2014
Google Scholar