Grengg C., Mittermayr F., Baldermann A., Böttcher M.E., Leis A., Koraimann G., Grunert P., Dietzel M.: Microbiologically induced concrete corrosion: A case study from a combined sewer network. Cement and Concrete Research, 77, 2015, 16-25, DOI: 10.1016/j.cemconres.2015.06.011
DOI: https://doi.org/10.1016/j.cemconres.2015.06.011
Google Scholar
Nguyen T.H., Thillainathan V., Chen S., Sung T., Grattan K.T.V., Taylor S.E., Basheer P.A.M., Long A.E.: Fluorescence based fibre optic pH sensor for the pH 10-13 range suitable for corrosion monitoring in concrete structures. Sensors and Actuators B: Chemical, 191, 2014, 498-507, DOI: 10.1016/j.snb.2013.09.072
DOI: https://doi.org/10.1016/j.snb.2013.09.072
Google Scholar
Saxena S., Baghban M.H.: Seawater concrete: A critical review and future prospects. Developments in the built Environment, 16, 2023, Article ID: 100257, DOI: 10.1016/j.dibe.2023.100257
DOI: https://doi.org/10.1016/j.dibe.2023.100257
Google Scholar
Saha A.K., Khan M.N.N., Sarker P.K., Shaikh F.A., Pramanik A.: The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Construction and Building Materials, 171, 2018, 743-758, DOI: 10.1016/j.conbuildmat.2018.03.183
DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.183
Google Scholar
Okabe S., Odagiri M., Ito T., Satoh H.: Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Applied And Environmental Microbiology, 73, 2007, 971-980, DOI: 10.1128/AEM.02054-06
DOI: https://doi.org/10.1128/AEM.02054-06
Google Scholar
Mignon A., Graulus G.J., Snoeck D., Martins J., Belie N.D., Dubruel P., Vlierberghe S.V.: pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete. Journal of Materials Science, 50, 2015, 970-979, DOI: 10.1007/s10853-014-8657-6
DOI: https://doi.org/10.1007/s10853-014-8657-6
Google Scholar
Jiang G., Keller J., Bond P.L.: Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion. Water Research, 65, 2014, 157-169, DOI: 10.1016/j.watres.2014.07.026
DOI: https://doi.org/10.1016/j.watres.2014.07.026
Google Scholar
Kaushal S.S., Likens G.E., Pace M.L., Utz R.M., Haq S., Gorman J., Grese M.: Freshwater salinization syndrome on a continental scale. The Proceedings of the National Academy of Sciences (PNAS), 115, 4, 2018, E574-E583, DOI: 10.1073/pnas.1711234115
DOI: https://doi.org/10.1073/pnas.1711234115
Google Scholar
Kaushal S.S., Duan S., Doody T.R., Haq S., Smith R.M., Newcomer Johnson T.A., Newcomb K.D., Gorman J., Bowman N., Mayer P.M., Wood K.L., Belt K.T., Stack W.P.: Human-accelerated weathering increases salinization, majorions, and alkalinization in fresh water across land use. Applied Geochemistry, 83, 2017, 121-135, DOI: 10.1016/j.apgeochem.2017.02.006
DOI: https://doi.org/10.1016/j.apgeochem.2017.02.006
Google Scholar
Khirunnisa S., Rifqi M.G., Amin M.S.: Kajian kuat tekan beton di lingkungan laut tropis Banyuwangi. Potensi: Jurnal Sipil Politeknik, 21, 2, 2019, 47-53, https://jurnal.polban.ac.id/ojs-3.1.2/potensi/issue/view/132 (06.11.24)
DOI: https://doi.org/10.35313/potensi.v21i2.1583
Google Scholar
Meidiani S., Hartawan S., Farsyah M.: Penggunaan variasi ph air (asam) pada kuat tekan beton normal F’c 25 Mpa. Jurnal BENTANG, 5, 2 , 2017, 127-134, DOI: 10.33558/bentang.v5i2.157
DOI: https://doi.org/10.33558/bentang.v5i2.157
Google Scholar
Yunianta A., Mabui D.S., Irianto: Pengaruh power of hydrogen (ph) air terhadap kuat tekan beton. Jurnal Teknik Dintek, 15, 2, 2022, 8-18, https://www.jurnal.ummu.ac.id/index.php/dintek/article/view/1301 (06/11/24)
Google Scholar
Wicaksono I.T., Nurwidayat R.: The Effect of pH water on the concrete mixtures and curing condition on the compressive strength of concrete. IOP Conference Series: Earth and Environmental Science, 999, 2022, Article ID: 012006, DOI: 10.1088/1755-1315/999/1/012006
DOI: https://doi.org/10.1088/1755-1315/999/1/012006
Google Scholar
Czajkowska J., Malarski M., Witkowska-Dobrev J., Dohojda M., Nowak P.: Mechanical performance of concrete exposed to sewage-the influence of time and pH. Minerals, 11, 5, 2021, Article ID: 544, DOI: 10.3390/min11050544
DOI: https://doi.org/10.3390/min11050544
Google Scholar
Trabanelli G., Monticelli C., Grassi V., Frignani A.: Electrochemical study on inhibitors of rebar corrosion in carbonated concrete. Cement and Concrete Research, 35, 9, 2005, 1804-1813, DOI: 10.1016/j.cemconres.2004.12.010
DOI: https://doi.org/10.1016/j.cemconres.2004.12.010
Google Scholar
Peipe W., Dengfeng W., Jing Z., Shaopo W., Anbang L., Yuchen Z., Fan L., Pengqi L., Yifeng Z., Xuyang P.: Concrete crack repairing device and concrete crack repairing method thereof, Patent Application No: 202111159813. Cscec Xinjiang Constr & Eng Group Co Ltd, 2021, available online: https://lens.org/022-933-641-925-71X (06.11.24)
Google Scholar
Walling S.A., Provis J.L.: Magnesia-based cements: A journey of 150 years, and cements for the future? Chemical reviews, 116, 7, 2016, 4170-4204, DOI: 10.1021/acs.chemrev.5b00463
DOI: https://doi.org/10.1021/acs.chemrev.5b00463
Google Scholar
Sassoni E.: Hydroxyapatite and other calcium phosphates for the conservation of cultural heritage: A review. Materials, 11, 4, 2018, Article ID: 557, DOI: 10.3390/ma11040557
DOI: https://doi.org/10.3390/ma11040557
Google Scholar
Ma Q., Nanukuttan S.V., Basheer P.A.M., Bai Y., Yang C.: Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes. Materials and Structures, 49, 2016, 3663-3677, DOI: 10.1617/s11527-015-0747-7
DOI: https://doi.org/10.1617/s11527-015-0747-7
Google Scholar
Maraghechi H., Rajabipour F., Pantano C.G., Burgos W.D.: Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity. Cement and Concrete Re- search, 87, 2016, 1-13, DOI: 10.1016/j.cemconres.2016.05.004
DOI: https://doi.org/10.1016/j.cemconres.2016.05.004
Google Scholar
Gu L., Bennett T., Visintin P.: Sulphuric acid exposure of conventional concrete and alkali-activated concrete: Assessment of test methodologies. Construction and Building Materials, 197, 2019, 681-692, DOI: 10.1016/j.conbuildmat.2018.11.166
DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.166
Google Scholar