EN 1990/A1:2013 05 15 Eurocode – Basis of structural design – Amendment 1: Application for bridges (consolidated version). Austrian Standards International, Vienna
Google Scholar
ÖNORM B 4008-2:2019 11 15 Assessment of load capacity of existing structures – Part 2: bridge construction. Austrian Standards International, Vienna
Google Scholar
ERRI D214 Railway bridges for speeds > 200 km/h, RP 2 – RP 9. European Rail Research Institute, 1999, Utrecht
Google Scholar
Zhai W., Han Z., Chen Z., Ling L., Zhu S.: Train-track-bridge dynamic interaction: a state-of-the-art review. Vehicle System Dynamics, 57, 7, 2019, 984-1024, DOI: 10.1080/00423114.2019.1605085
Google Scholar
Ticona Mela L.R., Ribeiro D., Calcada R., Bittencourt T.N.: Validation of a vertical train-track-bridge dynamic interaction model based on limited experimental data. Structure and Infrastructure Engineering, 16, 1, 2020, 181-201, DOI: 10.1080/15732479.2019.1605394
Google Scholar
Yang B., Yau J.D., Wu Y.S.: Vehicle-bridge interaction dynamics with applications to high-speed railways. World Scientific, Taipei, 2004
Google Scholar
Bettinelli L., Stollwitzer A., Fink J.: Numerical study on the influence of coupling beam modeling on structural accelerations during high-speed train crossings. Applied Sciences, 13, 15, 2023, Article ID: 8746, DOI: 10.3390/app13158746
Google Scholar
Atapin V., Bondarenko A., Sysyn M., Grün D.: Monitoring and evaluation of the lateral stability of CWR track. Journal of Failure Analysis and Prevention, 22, 2022, 319-332, DOI: 10.1007/s11668-021-01307-3
Google Scholar
Hasan N.: Buckling of a ballasted curved track under unloaded conditions. Advances in Mechanical Engineering, 13, 6, 2021, DOI: 10.1177/16878140211025187
Google Scholar
Lichtberger B.: Handbuch Gleis – Unterbau, Oberbau, Instandhaltung, Wirtschaftlichkeit. Tetzlaff Verlag, Hamburg, 2010
Google Scholar
Wang H., Xing C., Deng X.: Effect of Random Lateral Ballast Resistance on Force-Deformation Characteristics of CWR with a Small-Radius Curve. Materials, 16, 7, 2023, Article ID: 2876, DOI: 10.3390/ma16072876
Google Scholar
Khatibi F., Esmaeili M., Mohammadzadeh S.: DEM analysis of railway track lateral resistance. Soils and Foundations, 57, 4, 2017, 587-602, DOI: 10.1016/j.sandf.2017.04.001
Google Scholar
Esmaeili M., Hosseini S.A.S., Sharavi M.: Experimental assessment of dynamic lateral resistance of railway concrete sleeper. Soil Dynamics and Earthquake Engineering, 82, 2016, 40-54, DOI: 10.1016/j.soildyn.2015.11.011
Google Scholar
Mohammadzadeh S., Esmaeili M., Khatibi F.: A new field investigation on the lateral and longitudinal resistance of ballasted track. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232, 8, 2018, 2138-2148, DOI: 10.1177/0954409718764190
Google Scholar
Jing A., Aela P.: Review of the lateral resistance of ballasted tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 234, 8, 2020, 807-820, DOI: 10.1177/0954409719866355
Google Scholar
Zakeri J.A.: Lateral Resistance of Railway Track. In: Reliability and Safety in Railway, IntechOpen, Rijeka, 2012, 354-378, DOI: 10.5772/35421
Google Scholar
Jing G., Aela P., Fu H.: The contribution of ballast layer components to the lateral resistance of ladder sleeper track. Construction and Building Materials, 202, 2019, 796-805, DOI: 10.1016/j.conbuildmat.2019.01.017
Google Scholar
Le Pen L.M., Powrie W.: Contribution of base, crib and shoulder ballast to the lateral sliding resistance of railway track: a geotechnical perspective. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225, 2, 2011, 113-128, DOI: 10.1177/0954409710397094
Google Scholar
Stollwitzer A., Bettinelli L., Fink J.: The longitudinal track-bridge interaction of ballasted track in railway bridges: Experimental determination of dynamic stiffness and damping characteristics. Engineering Structures, 274, 2023, Article ID: 115115, DOI: 10.1016/j.engstruct.2022.115115
Google Scholar
Stollwitzer A., Bettinelli L., Fink J.: Experimental analysis of longitudinal and lateral track-bridge interaction of the ballasted track in railway bridges. 2nd Conference of the European Association on Quality Control of Bridges and Structures EUROSTRUCT 2023, ce/papers, 6, 5, 2023, 430-439, DOI: 10.1002/cepa.2128
Google Scholar
EN 1991-2:2012 03 01 Eurocode 1: Actions on structures – Part 2: Traffic loads on bridges (consolidated version). Austrian Standards International, Vienna
Google Scholar
Stollwitzer A., Bettinelli L., Fink J.: Vertical track-bridge interaction in railway bridges with ballast superstructure: experimental analysis of dynamic stiffness and damping behavior. International Journal of Structural Stability and Dynamics, DOI: 10.1142/S0219455425400085
Google Scholar
Stollwitzer A., Fink J.: Dämpfungskennwerte des Schotteroberbaus auf Eisenbahnbrücken, Teil 2: Energiedissipation im Schotteroberbau und zugehöriges Rechenmodell. Bautechnik, 98, 8, 2021, 552-562, DOI: 10.1002/bate.202000100 (in German)
Google Scholar
Hackl K.: Development and application of a testing facility for studying the dynamic behaviour of ballasted track at railway bridges. reposiTUm: Dissertation, Technische Universität Wien, 2017, DOI: 10.34726/hss.2017.50541 (in German)
Google Scholar