Joshi R.C., Lohita R.P.: Fly Ash in Concrete: Production, Properties and Uses. Gordon and Breach, Amsterdam, 1997
Google Scholar
Wang N., Sun X., Zhao Q., Yang Y., Wang P.: Leachability and adverse effects of coal fly ash: A review. Journal of Hazardous Materials, 396, 2020, ID article: 122725, DOI: 10.1016/J.JHAZMAT.2020.122725
DOI: https://doi.org/10.1016/j.jhazmat.2020.122725
Google Scholar
Ahmaruzzaman M.: A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36, 3, 2010, 327-363, DOI: 10.1016/J.PECS.2009.11.003
DOI: https://doi.org/10.1016/j.pecs.2009.11.003
Google Scholar
Lior N.: Sustainable energy development: The present (2009) situation and possible paths to the future. Energy, 35, 10, 2010, 3976-3994, DOI: 10.1016/J.ENERGY.2010.03.034
DOI: https://doi.org/10.1016/j.energy.2010.03.034
Google Scholar
Yao Z.T., Ji X.S., Sarker P.K., Tang J.H., Ge L.Q., Xia M.S., Xi Y.Q.: A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 2015, 105-121, DOI: 10.1016/J.EARSCIREV.2014.11.016
DOI: https://doi.org/10.1016/j.earscirev.2014.11.016
Google Scholar
Rafieizonooz M., Mirza J., Salim M.R., Hussin M.W., Khankhaje E.: Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construction and Building Materials, 116, 2016, 15-24, DOI: 10.1016/J.CONBUILDMAT.2016.04.080
DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.080
Google Scholar
Abubakar A.U., Baharudin K.S.: Tanjung Bin Coal Bottom Ash: From Waste to Concrete Material. Advanced Materials Research, 705, 2013, 163-168, DOI: 10.4028/WWW.SCIENTIFIC.NET/AMR.705.163
DOI: https://doi.org/10.4028/www.scientific.net/AMR.705.163
Google Scholar
Muthusamy K., Rasid M.H., Jokhio G.A., Mokhtar Albshir Budiea A., Hussin M.W., Mirza J.: Coal bottom ash as sand replacement in concrete: A review. Construction and Building Materials, 236, 2020, ID article: 117507, DOI: 10.1016/J.CONBUILDMAT.2019.117507
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117507
Google Scholar
Rostami R., Klemm A.J.: Influence of superabsorbent polymers on properties of fiber reinforced mortars containing fly ashes. Roads and Bridges - Drogi i Mosty, 19, 2, 2020, 149-163, DOI: 10.7409/rabdim.020.010
Google Scholar
Singh N., Shehnazdeep Bhardwaj A.: Reviewing the role of coal bottom ash as an alternative of cement. Construction and Building Materials, 233, 2020, ID article: 117276, DOI: 10.1016/j.conbuildmat.2019.117276
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117276
Google Scholar
Raza M.A., Khatri K.L., Memon M.A., Rafique K., Haque M.I.U., Mirjat N.H.: Exploitation of Thar coal field for power generation in Pakistan: A way forward to sustainable energy future. Energy Exploration & Exploitation, 40, 4, 2022, 1173-1196, DOI: 10.1177/01445987221082190
DOI: https://doi.org/10.1177/01445987221082190
Google Scholar
Pakistan’s Thar Coal Power Generation Potential, Private Power & Infrastructure Board. NEPRA, Pakistan, 2008
Google Scholar
Argiz C., Sanjuán M.Á., Menéndez E.: Coal Bottom Ash for Portland Cement Production. Advances in Materials Science and Engineering, 2017, 2017, ID article: 6068286, DOI: 10.1155/2017/6068286
DOI: https://doi.org/10.1155/2017/6068286
Google Scholar
Chuanfeng Z., Yupeng F., Zhuang M., Xue Y.: Influence of mineral filler on the low-temperature cohesive strength of asphalt mortar. Cold Regions Science and Technology, 133, 2017, 1-6, DOI: 10.1016/J.COLDREGIONS.2016.10.006
DOI: https://doi.org/10.1016/j.coldregions.2016.10.006
Google Scholar
Cheng Y., Tao J., Jiao Y., Tan G., Guo Q., Wang S., Ni P.: Influence of the properties of filler on high and medium temperature performances of asphalt mastic. Construction and Building Materials, 118, 2016, 268-275, DOI: 10.1016/J.CONBUILDMAT.2016.05.041
DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.041
Google Scholar
Ramzi N.I.R., Shahidan S., Maarof M.Z., Ali N.: Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant. IOP Conference Series: Materials Science and Engineering, 160, 1, 2016, ID article: 012056, DOI: 10.1088/1757-899X/160/1/012056
DOI: https://doi.org/10.1088/1757-899X/160/1/012056
Google Scholar
Tenza-Abril A., Saval J., Cuenca A.: Using sewage-sludge ash as filler in bituminous mixes. Journal of Materials in Civil Engineering, 27, 4, 2015, DOI: 10.1061/(ASCE)MT.1943-5533.0001087
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001087
Google Scholar
Bajare D., Bumanis G., Upeniece L.: Coal combustion bottom ash as microfiller with pozzolanic properties for traditional concrete. Procedia Engineering, 57, 2013, 149-158, DOI: 10.1016/j.proeng.2013.04.022
DOI: https://doi.org/10.1016/j.proeng.2013.04.022
Google Scholar
Singh M., Siddique R.: Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resources, Conservation and Recycling, 72, 2013, 20-32, DOI: 10.1016/J.RESCONREC.2012.12.006
DOI: https://doi.org/10.1016/j.resconrec.2012.12.006
Google Scholar
Muniandy R., Aburkaba E.E.: The effect of type and particle size of industrial wastes filler on indirect tensile stiffness and fatigue performance of stone mastic asphalt mixtures. Australian Journal of Basic and Applied Sciences, 5, 11, 2011, 297-308
Google Scholar
Zulkati A., Diew W.Y., Delai D.S.: Effects of fillers on properties of asphalt-concrete mixture. Journal of Transportation Engineering, 138, 7, 2012, 902-910, DOI: 10.1061/(ASCE)TE.1943-5436.0000395
DOI: https://doi.org/10.1061/(ASCE)TE.1943-5436.0000395
Google Scholar
Ghaffar A., Siddiqi Z.A., Ahmed K.: Assessing Suitability of Margalla Crush for Ultra High Strength Concrete. Pakistan Journal of Engineering and Applied Sciences, 7, 2010, 38-46
Google Scholar
El Moudni El Alami S., Moussaoui R., Monkade M., Lahlou K., Hasheminejad N., Margaritis A., Van den Bergh W., Vuye C.: Lime Treatment of Coal Bottom Ash for Use in Road Pavements: Application to El Jadida Zone in Morocco. Materials, 12, 17, 2019, 2674, DOI: 10.3390/ma12172674
DOI: https://doi.org/10.3390/ma12172674
Google Scholar
Lokeshappa B., Dikshit A.K.: Behaviour of Metals in Coal Fly Ash Ponds. APCBEE Procedia, 1, 2012, 34-39, DOI: 10.1016/j.apcbee.2012.03.007
DOI: https://doi.org/10.1016/j.apcbee.2012.03.007
Google Scholar
Baite E., Messan A., Hannawi K., Tsobnang F., Prince W.: Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre (Niger). Construction and Building Materials, 125, 2016, 919-926, DOI: 10.1016/j.conbuildmat.2016.08.117
DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.117
Google Scholar
Jarusiripot C.: Removal of reactive dye by adsorption over chemical pretreatment coal based bottom ash. Procedia Chemistry, 9, 2014, 121-130, DOI: 10.1016/j.proche.2014.05.015
DOI: https://doi.org/10.1016/j.proche.2014.05.015
Google Scholar
Rathnayake M., Julnipitawong P., Tangtermsirikul S., Toochinda P.: Utilization of coal fly ash and bottom ash as solid sorbents for sulfur dioxide reduction from coal fired power plant: Life cycle assessment and applications. Journal of Cleaner Production, 202, 2018, 934-945, DOI: 10.1016/j.jclepro.2018.08.204
DOI: https://doi.org/10.1016/j.jclepro.2018.08.204
Google Scholar
Colonna P., Berloco N., Ranieri V., Shuler S.T.: Application of Bottom Ash for Pavement Binder Course. Procedia - Social and Behavioral Sciences, 53, 2012, 961-971, DOI: 10.1016/j.sbspro.2012.09.945
DOI: https://doi.org/10.1016/j.sbspro.2012.09.945
Google Scholar
Khitab A., Bukhari S., Tayyab S.: Effect of Partial Replacement of Sand by Coal Bottom Ash in Concrete. Southern Journal of Research, 2, 2, 2022, 102-106, DOI: 10.20021/sjr.v2i2.56
Google Scholar
MS-2 Asphalt Mix Design Methods. Asphalt Institute, Pakistan, 2014
Google Scholar
AASHTO T 245 Standard Method of Test for Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus. American Association of State Highway and Transportation Officials (AASHTO), Washington, 2022
Google Scholar
NHA General Specification. National Highway Authority (NHA), Government of Pakistan, 1998
Google Scholar
Luo H., Chen S., Lin D.F., Cai X.: Use of incinerator bottom ash in open-graded asphalt concrete. Construction and Building Materials, 149, 2017, 497-506, DOI: 10.1016/j.conbuildmat.2017.05.164
DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.164
Google Scholar
ASTM D6927 Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. American Society of Testing and Materials (ASTM), Washington, 2015
Google Scholar
Ameli A., Babagoli R., Norouzi N., Jalali F., Poorheydari Mamaghani F.: Laboratory evaluation of the effect of coal waste ash (CWA) and rice husk ash (RHA) on performance of asphalt mastics and Stone matrix asphalt (SMA) mixture. Construction and Building Materials, 236, 2020, ID article: 117557, DOI: 10.1016/j.conbuildmat.2019.117557
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117557
Google Scholar
AASHTO T 324 Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures. American Association of State Highway and Transportation Officials (AASHTO), Washington, 2019
Google Scholar
AASHTO T 342 Standard Method of Test for Determining Dynamic Modulus of Hot Mix Asphalt (HMA). American Association of State Highway and Transportation Officials (AASHTO), Washington, 2019
Google Scholar
Tang F., Ma T., Zhang J., Guan Y., Chen L.: Integrating three-dimensional road design and pavement structure analysis based on BIM. Automation in construction, 113, 2020, ID article: 103152, DOI: 10.1016/J.AUTCON.2020.103152
DOI: https://doi.org/10.1016/j.autcon.2020.103152
Google Scholar
Yang J., Li Z., Xu X.: Preparation and evaluation of cooling asphalt concrete modified with SBS and tourmaline anion powder. Journal of Cleaner Production, 289, 2021, ID article: 125135, DOI: 10.1016/j.jclepro.2020.125135
DOI: https://doi.org/10.1016/j.jclepro.2020.125135
Google Scholar
Zhang W., Shen S., Faheem A., Basak P., Wu S., Muhammad L.: Predictive quality of the pavement ME design program for field performance of warm mix asphalt pavements. Construction and Building Materials, 131, 2017, 400-410, DOI: 10.1016/j.conbuildmat.2016.11.086
DOI: https://doi.org/10.1016/j.conbuildmat.2016.11.086
Google Scholar
AASHTO T321 Standard Method of Test for Determining the Fatigue Life of Compacted Hot-Mix Asphalt (HMA) Subjected to Repeated Flexural Bending. American Association of State Highway and Transportation Officials (AASHTO), Washington, 2007
Google Scholar
Shen S., Zhang W., Shen L., Huang H.: A statistical based framework for predicting field cracking performance of asphalt pavements: Application to top-down cracking prediction. Construction and Building Materials, 116, 2016, 226-234, DOI: 10.1016/j.conbuildmat.2016.04.148
DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.148
Google Scholar
Shen S., Zhang W., Wang H., Huang H.: Numerical evaluation of surface-initiated cracking in flexible pavement overlays with field observations. Road Materials and Pavement Design, 18, 1, 2017, 221-234, DOI: 10.1080/14680629.2016.1138879
DOI: https://doi.org/10.1080/14680629.2016.1138879
Google Scholar