Kukiełka J.: Asphalt pavements of local government roads. Lublin University of Technology, Lublin, 2013
Google Scholar
Merrill D., Nunn M., Carswell I.: A guide to the use and specification of cold recycled materials for the maintenance of road pavements. Transport Research Laboratory (TRL), Report 611, 2004
Google Scholar
Lewis A., Collings D.: Cold in place recycling: a relevant process for road rehabilitation and upgrading. 7th Conference on Asphalt Pavements for Southern Africa, CAPSA, 29 August – 2 September 1999
Google Scholar
Weinert F.: Merkblatt Kaltrecycling in situ – Betonstrassentagung 2001. Heft 25 (FGSV: Merkblatt für Kaltrecycling in situ im Straßenoberbau), Entwurf, Köln, 2002
Google Scholar
Jasieński A., Rens L.: In situ recycling with cement – the Belgian experience. Seminar on Road Pavement Recycling, Warsaw, Poland, 10–11 October 2002
Google Scholar
Zhang J., Ding L., Li F., Peng J.: Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China. Journal of Cleaner Production, 255, 120223, 2020, DOI: 10.1016/j.jclepro.2020.120223
DOI: https://doi.org/10.1016/j.jclepro.2020.120223
Google Scholar
Mehrjardi G.T., Azizi A., Haji-Azizi A., Asdollafardi G.: Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics, 23, 100349, 2020, DOI: 10.1016/j.trgeo.2020.100349
DOI: https://doi.org/10.1016/j.trgeo.2020.100349
Google Scholar
Huber S., Henzinger C., Heyer D.: Influence of water and frost on the performance of natural and recycled materials used in unpaved roads and road shoulders. Transportation Geotechnics, 22, 100305, 2020, DOI: 10.1016/j.trgeo.2019.100305
DOI: https://doi.org/10.1016/j.trgeo.2019.100305
Google Scholar
Tavira J., Jiménez J.R., Ledesma E.F., López-Uceda A., Ayuso J.: Real-scale study of a heavy traffic road built with in situ recycled demolition waste. Journal of Cleaner Production, 248, 119219, 2020, DOI: 10.1016/j.jclepro.2019.119219
DOI: https://doi.org/10.1016/j.jclepro.2019.119219
Google Scholar
Cristelo N., Vieira C.S., de Lurdes Lopes M.: Geotechnical and geoenvironmental assessment of recycled construction and demolition waste for road embankments. Procedia Engineering, 143, 2016, 51–58, DOI: 10.1016/j.proeng.2016.06.007
DOI: https://doi.org/10.1016/j.proeng.2016.06.007
Google Scholar
Soleimanbeigi A., Edil T.B.: Compressibility of recycled materials for use as highway embankment fill. Journal of Geotechnical and Geoenvironmental Engineering, 141, 5, 2015, DOI: 10.1061/(ASCE)GT.1943-5606.0001285
DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001285
Google Scholar
Liu L., Li Z., Cai G., Liu X., Yan S.: Humidity field characteristics in road embankment constructed with recycled construction wastes. Journal of Cleaner Production, 259, 120977, 2020, DOI: 10.1016/j.jclepro.2020.120977
DOI: https://doi.org/10.1016/j.jclepro.2020.120977
Google Scholar
Liu L., Li Z., Congress S.S.C., Liu X., Dai B.: Evaluating the influence of moisture on settling velocity of road embankment constructed with recycled construction wastes. Construction and Building Materials, 241, 117988, 2020, DOI: 10.1016/j.conbuildmat.2019.117988
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117988
Google Scholar
Arulrajah A., Disfani M.M., Horpibulsuk S., Suksiripattanapong C., Prongmanee N.: Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials, 58, 2014, 245–257, DOI: 10.1016/j.conbuildmat.2014.02.025
DOI: https://doi.org/10.1016/j.conbuildmat.2014.02.025
Google Scholar
Azam A.M., Cameron D.A.: Geotechnical properties of blends of recycled clay masonry and recycled concrete aggregates in unbound pavement construction. Journal of Materials in Civil Engineering, 25, 6, 2013, 788–798, DOI: 10.1061/(ASCE)MT.1943-5533.0000634
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000634
Google Scholar
Gabr A.R., Cameron D.A.: Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering, 24, 6, 2012, DOI: 10.1061/(ASCE)MT.1943-5533.0000447
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000447
Google Scholar
Anghelescu L., Cruceru M., Diaconu B.: Building materials obtained by recycling coal ash and waste drilling fluid and characterization of engineering properties by means of Artificial Neural Networks. Construction and Building Materials, 227, 116616, 2019, DOI: 10.1016/j.conbuildmat.2019.07.342
DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.342
Google Scholar
Xue Y., Arulrajah A., Narsilio G.A., Horpibulsuk S., Chu J.: Washed recycled sand derived from construction and demolition wastes as engineering fill materials. Construction and Building Materials, 358, 129433, 2022, DOI: 10.1016/j.conbuildmat.2022.129433
DOI: https://doi.org/10.1016/j.conbuildmat.2022.129433
Google Scholar
Huang Y., Bird R.N., Heidrich O.: A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52, 1, 2007, 58–73, DOI: 10.1016/j.resconrec.2007.02.002
DOI: https://doi.org/10.1016/j.resconrec.2007.02.002
Google Scholar
Rongali U., Singh G., Chourasiya A., Jain Dr P.K.: Laboratory investigation on use of fly ash plastic waste composite in bituminous concrete mixtures. Procedia – Social and Behavioral Sciences, 104, 2013, 89–98, DOI: 10.1016/j.sbspro.2013.11.101
DOI: https://doi.org/10.1016/j.sbspro.2013.11.101
Google Scholar
Wang Q.Z., Wang N.N., Tseng M.L., Huang Y.M., Li N.L.: Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China. Journal of Cleaner Production, 249, 4, 119411, 2020, DOI: 10.1016/j.jclepro.2019.119411
DOI: https://doi.org/10.1016/j.jclepro.2019.119411
Google Scholar
Nanjegowda V.H., Biligiri K.P.: Recyclability of rubber in asphalt roadway systems: A review of applied research and advancement in technology. Resources, Conservation & Recycling, 155, 104655, 2020, DOI: 10.1016/j.resconrec.2019.104655
Google Scholar
Zhong H., Chen M., Zhang M.: Engineering properties of sustainable engineered cementitious composites with recycled tyre polymer fibres. Construction and Building Materials, 370, 130672, 2023, DOI: 10.1016/j.conbuildmat.2023.130672
DOI: https://doi.org/10.1016/j.conbuildmat.2023.130672
Google Scholar
Ren J., Wang S., Zang G.: Effects of recycled aggregate composition on the mechanical characteristics and material design of cement stabilized cold recycling mixtures using road milling materials. Construction and Building Materials, 244, 118329, 2020, DOI: 10.1016/j.conbuildmat.2020.118329
DOI: https://doi.org/10.1016/j.conbuildmat.2020.118329
Google Scholar
Zhang L.W., Sojobi A., Kodur V.R., Liew K.M.: Effective utilization and recycling of mixed recycled aggregates for a greener environment. Journal of Cleaner Production, 236, 10, 117600, 2019,DOI: 10.1016/j.jclepro.2019.07.075
DOI: https://doi.org/10.1016/j.jclepro.2019.07.075
Google Scholar
Visintin P., Xie T., Bennett B.: A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, 248, 119243, 2020, DOI: 10.1016/j.jclepro.2019.119243
DOI: https://doi.org/10.1016/j.jclepro.2019.119243
Google Scholar
Instructions for the design and embedding of mineral-cement-emulsion mixtures (MCE). General Directorate for National Roads and Motorways (GDDKiA), Annex No. 9.4.2 RID, 2019
Google Scholar
Fang L., Zhou J., Yang Z., Yuan Q., Que Y.: Interaction between cement and asphalt emulsion and its influences on asphalt emulsion demulsification, cement hydration and rheology. Construction and Building Materials, 329, 127220, 2022, DOI: 10.1016/j.conbuildmat.2022.127220
DOI: https://doi.org/10.1016/j.conbuildmat.2022.127220
Google Scholar
Yang W., Ouyang J., Meng Y., Han B., Sha Y.: Effect of curing and compaction on volumetric and mechanical properties of cold-recycled mixture with asphalt emulsion under different cement contents. Construction and Building Materials, 297, 123699, 2021, DOI: 10.1016/j.conbuildmat.2021.123699
DOI: https://doi.org/10.1016/j.conbuildmat.2021.123699
Google Scholar
Kukiełka J., Bańkowski W.: The experimental study of mineral-cement-emulsion mixtures with rubber powder addition. Construction and Building Materials, 226, 2019, 759–766, DOI: 10.1016/j.conbuildmat.2019.07.276
DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.276
Google Scholar
Kuźniewski J., Skotnicki Ł.: Properties of mineral-cement emulsion mixtures based on concrete aggregates from recycling. Case Studies in Construction Materials, 12, e00309, 2019, DOI: 10.1016/j.cscm.2019.e00309
DOI: https://doi.org/10.1016/j.cscm.2019.e00309
Google Scholar
Dołżycki B., Jaskuła P.: Review and evaluation of cold recycling with bitumen emulsion and cement for rehabilitation of old pavements. Journal of Traffic and Transportation Engineering (English Edition), 6, 4, 2019, 311–323, DOI: 10.1016/j.jtte.2019.02.002
DOI: https://doi.org/10.1016/j.jtte.2019.02.002
Google Scholar
López-Alonso M., Martinez-Echevarria M.J., Garach L., Galán A., Ordoñez J., Agrela F.: Feasible use of recycled alumina combined with recycled aggregates in road construction. Construction and Building Materials, 195, 2019, 249–257, DOI: 10.1016/j.conbuildmat.2018.11.084
DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.084
Google Scholar
Birgisdóttir H., Bhander G., Hauschild M.Z., Christensen T.H.: Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Management, 27, 8, 2007, S75–S84, DOI: 10.1016/j.wasman.2007.02.016
DOI: https://doi.org/10.1016/j.wasman.2007.02.016
Google Scholar
Loaiza A., Colorado H.A.: Marshall stability and flow tests for asphalt concrete containing electric arc furnace dust waste with high ZnO contents from the steel making process. Construction and Building Materials, 166, 2018, 769–778, DOI: 10.1016/j.conbuildmat.2018.02.012
DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.012
Google Scholar
Juveria F., Rajeev F.J.P., Jegatheesan P., Sanjayan J.: Impact of stabilisation on mechanical properties of recycled concrete aggregate mixed with waste tyre rubber as a pavement material. Case Studies in Construction Materials, 18, e02001, 2023, DOI: 10.1016/j.cscm.2023.e02001
DOI: https://doi.org/10.1016/j.cscm.2023.e02001
Google Scholar
Liu L., Cai G., Zhang J., Liu X., Liu K.: Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review. Renewable and Sustainable Energy Reviews, 126, 109831, 2020, DOI: 10.1016/j.rser.2020.109831
DOI: https://doi.org/10.1016/j.rser.2020.109831
Google Scholar
Nanjegowda V.H., Biligiri K.P.: Recyclability of rubber in asphalt roadway systems: A review of applied research and advancement in technology. Resources, Conservation & Recycling, 155, 104655, 2020, DOI: 10.1016/j.resconrec.2019.104655
DOI: https://doi.org/10.1016/j.resconrec.2019.104655
Google Scholar
Xue Y., Liu C., Qu J., Lv S., Ju Z., Ding S., An H., Ren K.: Research on pavement performance of recycled asphalt mixture based on separation technology of asphalt and aggregate in RAP. Construction and Building Materials, 393, 132103, 2023, DOI: 10.1016/j.conbuildmat.2023.132103
DOI: https://doi.org/10.1016/j.conbuildmat.2023.132103
Google Scholar
Li M., Liu L., Huang W., Wang H.: Study on the mixing process improvement for hot recycled asphalt mixture. Construction and Building Materials, 365, 130068, 2023, DOI: 10.1016/j.conbuildmat.2022.130068
DOI: https://doi.org/10.1016/j.conbuildmat.2022.130068
Google Scholar
Yao X., Xu T.: Fatigue fracture and self-healing behaviors of cold recycled emulsified asphalt mixture containing microcapsules based on semicircular bending test. Journal of Cleaner Production, 410, 137171, 2023, DOI: 10.1016/j.jclepro.2023.137171
DOI: https://doi.org/10.1016/j.jclepro.2023.137171
Google Scholar
Naser M., Abdel-Jaber M., Al-shamayleh R., Louzi N., Ibrahim R.: Evaluating the effects of using reclaimed asphalt pavement and recycled concrete aggregate on the behavior of hot mix asphalts. Transportation Engineering, 10, 100140, 2022, DOI: 10.1016/j.treng.2022.100140
DOI: https://doi.org/10.1016/j.treng.2022.100140
Google Scholar
Dareyni M., Pourjafar S.V., Moghaddam A.M.: Cationic asphalt emulsion as an additive of RCC Pavement: Exploring for Mode-I fracture behavior and dynamic modulus properties. Engineering Fracture Mechanics, 283, 109211, 2023, DOI: 10.1016/j.engfracmech.2023.109211
DOI: https://doi.org/10.1016/j.engfracmech.2023.109211
Google Scholar
Angelakopoulos H., Papastergiou P., Pilakoutas K.: Fibrous roller-compacted concrete with recycled materials – feasibility study. Magazine of Concrete Research, 67, 15, 2015, 801–811, DOI: 10.1680/macr.14.00246
DOI: https://doi.org/10.1680/macr.14.00246
Google Scholar
Beja I.A., Motta R., Bernucci L.B.: Application of recycled aggregates from construction and demolition waste with Portland cement and hydrated lime as pavement subbase in Brazil. Construction and Building Materials, 258, 119520, 2020, DOI: 10.1016/j.conbuildmat.2020.119520
DOI: https://doi.org/10.1016/j.conbuildmat.2020.119520
Google Scholar
Song X., Qiao P., Wen H.: Recycled aggregate concrete enhanced with polimer aluminium sulfate. Magazine of Concrete Research, 67, 10, 2015, 496–502, DOI: 10.1680/macr.14.00119
DOI: https://doi.org/10.1680/macr.14.00119
Google Scholar
Nwakaire C.M., Yap S.P., Yuen C.W., Onn C.C., Koting S., Babalghaith A.M.: Laboratory study on recycled concrete aggregate based asphalt mixtures for sustainable flexible pavement surfacing. Journal of Cleaner Production, 262, 121462, 2020, DOI: 10.1016/j.jclepro.2020.121462
DOI: https://doi.org/10.1016/j.jclepro.2020.121462
Google Scholar
Kox S., Vanroelen G., Van Herck J., de Krem H., Vandoren B.: Experimental evaluation of the high-grade properties of recycled concrete aggregates and their application in concrete road pavement construction. Case Studies in Construction Materials, 11, e00282, 2019, DOI: 10.1016/j.cscm.2019.e00282
DOI: https://doi.org/10.1016/j.cscm.2019.e00282
Google Scholar
Chen T., Luan Y., Ma T., Zhu J., Huang X., Ma S.: Mechanical and microstructural characteristics of different interfaces in cold recycled mixture containing cement and asphalt emulsion. Journal of Cleaner Production, 258, 120674, 2020, DOI: 10.1016/j.jclepro.2020.120674
Google Scholar
Chen T., Ma T., Huang X., Ma S., Tang F., Wu S.: Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture. Journal of Cleaner Production, 263, 121467, 2020, DOI: 10.1016/j.jclepro.2020.121467
DOI: https://doi.org/10.1016/j.jclepro.2020.121467
Google Scholar
Bai G., Zhu C., Liu C., Liu B.: An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Construction and Building Materials, 240, 117978, 2020, DOI: 10.1016/j.conbuildmat.2019.117978
DOI: https://doi.org/10.1016/j.conbuildmat.2019.117978
Google Scholar
Chen T., Luan Y., Ma T., Zhu J., Huang X., Ma S.: Mechanical and microstructural characteristics of different interfaces in cold recycled mixture containing cement and asphalt emulsion. Journal of Cleaner Production, 258, 120674, 2020, DOI: 10.1016/j.jclepro.2020.120674
DOI: https://doi.org/10.1016/j.jclepro.2020.120674
Google Scholar
Corradini A., Cerni G., Porceddu P.R.: Comparative study on resilient modulus of natural and post-quake recycled aggregates in bound and unbound pavement subbase applications. Construction and Building Materials, 297, 123717, 2021, DOI: 10.1016/j.conbuildmat.2021.123717
DOI: https://doi.org/10.1016/j.conbuildmat.2021.123717
Google Scholar
Noura S., Yaghoubi E., Fragomeni S., Wasantha P.L.P., Van Staden R.: Fatigue and stiffness characteristics of asphalt mixtures made of recycled aggregates. International Journal of Fatigue, 174, 107714, 2023, DOI: 10.1016/j.ijfatigue.2023.107714
DOI: https://doi.org/10.1016/j.ijfatigue.2023.107714
Google Scholar
Dołżycki B., Jaczewski M., Szydłowski C.: The long-term properties of mineral-cement-emulsion mixtures. Construction and Building Materials, 156, 2017, 799–808, DOI: 10.1016/j.conbuildmat.2017.09.032
DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.032
Google Scholar
Skotnicki Ł., Kuźniewski J.: Cracking resistance of recycled mineral-cement-emulsion mixtures. Roads and Bridges – Drogi i Mosty, 22, 1, 2023, 19–39, DOI: 10.7409/rabdim.023.002
Google Scholar
Zhou J., Zeng M., Chen Y., Zhong M.: Evaluation of cement stabilized recycled concrete aggregates treated with waste oil and asphalt emulsion. Construction and Building Materials, 199, 2019, 143–153, DOI: 10.1016/j.conbuildmat.2018.12.028
DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.028
Google Scholar
Guha A.H., Assaf G.J.: Effect of Portland cement as a filler in hot-mix asphalt in hot regions. Journal of Building Engineering, 28, 101036, 2020, DOI: 10.1016/j.jobe.2019.101036
DOI: https://doi.org/10.1016/j.jobe.2019.101036
Google Scholar
Du S.: Mechanical properties and shrinkage characteristics of cement stabilized macadam with asphalt emulsion. Construction and Building Materials, 203, 2019, 408–416, DOI: 10.1016/j.conbuildmat.2019.01.126
DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.126
Google Scholar
Skotnicki Ł., Kuźniewski J., Szydło A.: Stiffness identification of foamed asphalt mixtures with cement, evaluated in laboratory and in situ in road pavements. Materials, 13, 5, 1128, 2020, 1–19, DOI: 10.3390/ma13051128
DOI: https://doi.org/10.3390/ma13051128
Google Scholar
Kuźniewski J., Skotnicki Ł.: Influence of the compaction method on mineral-cement emulsion mixture properties. Journal of Materials in Civil Engineering, 28, 11, 04016138, 2016, 1–9, DOI: 10.1061/(ASCE)MT.1943-5533.0001651
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001651
Google Scholar
Kuźniewski J., Skotnicki Ł., Szydło A.: Fatigue durability of asphalt-cement mixtures. Bulletin of the Polish Academy of Sciences Technical Sciences, 63, 1, 2020, 107–111, DOI: 10.1515/bpasts-2015-0012
DOI: https://doi.org/10.1515/bpasts-2015-0012
Google Scholar
PN-EN 13286-2:2010 Unbound and hydraulically bound mixtures – Part 2: Test methods for the determination of the laboratory reference density and water content – Proctor compaction
Google Scholar
Szydło A., Mackiewicz P., Skotnicki Ł., Kuźniewski J.: Evaluation of the impact of an innovative binding agent on the physical, mechanical and rheological properties of a recycled base layer, made of a mineral-binder mixture with an asphalt emulsion. in: TECHMATSTRATEG “Modern Material Technologies” Program, Report No. 3/2/PWr/2019. Wroclaw University of Science and Technology, Wroclaw, Poland, 2019
Google Scholar
Szydło A., Mackiewicz P., Skotnicki Ł., Kuźniewski J.: An innovative technology using binding agent optimization that provides long service life of cold-recycled pavement construction – Report of the Institute of Civil Engineering on Wroclaw University of Science and Technology no. SPR 74. Wroclaw University, Wroclaw, Poland, 2019
Google Scholar
PN-EN 13808:2013-10 Bitumen and bituminous binders – Framework for specifying cationic bituminous emulsions
Google Scholar
Zhang Z., Cong C., Xi W., Li S.: Application research on the performances of pavement structure with foamed asphalt cold recycling mixture. Construction and Building Materials, 169, 2018, 396–402, DOI: 10.1016/j.conbuildmat.2018.02.134
DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.134
Google Scholar
Gui-Ping H., Wing-Gun W.: Effects of moisture on strength and permanent deformation of foamed asphalt mix incorporating RAP materials. Construction and Building Materials, 22, 1, 2008, 30–40, DOI: 10.1016/j.conbuildmat.2006.06.033
DOI: https://doi.org/10.1016/j.conbuildmat.2006.06.033
Google Scholar
Yan J., Ni F., Yang M., Li J.: An experimental study on fatigue properties of emulsion and foam cold recycled mixes. Construction and Building Materials, 24, 11, 2010, 2151–2156, DOI: 10.1016/j.conbuildmat.2010.04.044
DOI: https://doi.org/10.1016/j.conbuildmat.2010.04.044
Google Scholar
PN-EN 12697-26:2018-08 Bituminous mixtures – Test methods – Part 26: Stiffness
Google Scholar
PN-EN 12697-23:2017-12 Bituminous mixtures – Test methods – Part 23: Determination of the indirect tensile strength of bituminous specimens
Google Scholar