Roads and Bridges - Drogi i Mosty
13, 3, 2014, 189-202

Load capacity and serviceability conditions for footbridges made of fibre-reinforced polymer laminates

Jacek Chróścielewski Mail
Gdansk University of Technology, Faculty of Civil and Environmental Engineering
Marian Klasztorny Mail
Military University of Technology, Faculty of Mechanical Engineering, Warsaw
Daniel Nycz Mail
DES ART Company, Sanok
Bartosz Sobczyk Mail
Gdansk University of Technology, Faculty of Civil and Environmental Engineering


The contribution is focused on derivation of the Ultimate Limit State (ULS) and Serviceability Limit State (SLS) design criteria for footbridges built of fibre-reinforced polymer matrix (FRP) laminates. The ULS design criterion is based on the design guidelines for above-ground, pressure, FRP composite tanks and the Tsai-Wu failure criterion, which is used to predict the onset of FRP laminates damage. The SLS criterion is based on vertical deflections and natural frequencies limitations of the analysed FRP footbridge. As a part of the research, a special design procedure is established for FRP footbridges design process, covering both the preliminary and detailed engineering calculations. As an illustrative example, the procedure is applied to glass-fibre reinforced vinylester laminate with 90°C heat deflection temperature and 50-year service life. A deflection-based serviceability limit state criterion is established using the same approach as that currently used in the design of steel footbridges. Moreover, the second serviceability limit state criterion is proposed. It limits the range of possible fundamental natural frequency of footbridge without any load and loaded with an additional mass 70 kg/m2 applied to simulate load created by moderate pedestrian traffic.


fibre reinforced plastics (FRP), FRP composite footbridges, partial safety factor method, serviceability limit state criterion, ultimate limit state criterion

Full Text:



Khalifa M.A., Hodhod O.A., Zaki M.A.: Analysis and design methodology for an FRP cable-stayed pedestrian bridge. Composites: Part B-Engineering, 27, 3-4, 1996, 307-317

Aref A.J., Kitane Y., Lee G.C.: Analysis of hybrid FRP-concrete multi-cell bridge superstructure. Composite Structures, 69, 3, 2005, 346-359

Tromp L.: Composite footbridges and vacuum infusion. A 44 m footbridge for Delft. Proceedings of 3rd International Conference FOOTBRIDGE 2008, 1-7

Chróścielewski J., Kreja I., Sabik A., Sobczyk B., Witkowski W.: Failure analysis of footbridge made of composite materials. Proceedings of 10th SSTA Conference, Gdańsk, Poland, 16-18 Oct. 2013, CRC Press, Taylor & Francis Group, Balkema, 2013, 389-392

Santos F.M., Mohan M.: Train Buffeting Measurements on a Fibre-Reinforced Plastic Composite Footbridge. Structural Engineering International, 21, 3, 2011, 285-289

Flaga A.: Mosty dla pieszych. WKŁ, Warszawa, 2011

Poneta P., Kulpa M., Własak L., Siwowski T.: Koncepcja i badania innowacyjnego dźwigara mostowego z kompozytów FRP. Inżynieria i Budownictwo, 70, 3, 2014, 147-151

Radomski W.: Nowoczesne rozwiązania materiałowe i konstrukcyjne w mostownictwie, w: Kładki dla pieszych – Architektura, projektowanie, realizacja, badania. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2007, 89-100

Zobel H., Karwowski W., Żółtowski K., Kozakiewicz A.: Badania kratownicowej kładki z kompozytu polimerowego zbrojonego włóknem szklanym. Inżynieria i Budownictwo, 61, 4, 2005, 202-206

Technical guide. Footbridges. Assessment of vibrational behaviour of footbridges under pedestrian loading. Setra/AFGC, Paris, France, 2006

Madaj A., Sturzbecher K., Wołowicki W.: Badania dynamiczne kładki dla pieszych o pomoście kompozytowym. Inżynieria i Budownictwo, 65, 1-2, 2009, 85-88

Design of Footbridges. Guideline. RFS2-CT-2007-00033, 2008

PN-85/S-10030. Bridge objects. Loads [in Polish]

PN-82/S-10052. Bridge objects. Steel structures. Design [in Polish]

Camanho P.P.: Failure criteria for fibre-reinforced polymer composites. Secçăo de Mecânica Aplicada, Departamento de Engenharia Mecânica e Gestăo Industrial, Faculdade de Engenharia da Universidade do Porto, 2002

Soden P.D., Kaddour A.S., Hinton M.J.: Recommendations for designers and researchers resulting from the world-wide failure exercise. Composites Science and Technology, 64, 3-4, 2004, 589-604

Jones R.M.: Mechanics of composite materials. 2nd Edn., Taylor & Francs, USA, 1999

Hahn H.T., Tsai S.W.: Introduction to composite materials. Technomic Publishing Co., Lancaster, USA, 1980

Wu R.Y., Stachurski Z.: Evaluation of the normal stress interaction parameter in the tensor polynomial strength theory for anisotropic material. Journal of Composite Materials, 18, 1984, 456-463

PN-EN 13121-3+A1:2010E. Ground containers made of plastics reinforced with glass fibre. Part 3. Design and production control [in Polish], 2010

Królikowski W.: Polimerowe kompozyty konstrukcyjne. PWN, Warszawa, 2012

Chroscielewski J., Klasztorny M., Miśkiewicz M., Romanowski R., Wilde K.: Innovative design of GFRP sandwich footbridge. Proceedings of Int. Conf. Footbridges: Past, Present & Future FOOTBRIDGE-2014, 16-18 July 2014, London, England

Load capacity and serviceability conditions for footbridges made of fibre-reinforced polymer laminates

Chróścielewski, Jacek et al. Load capacity and serviceability conditions for footbridges made of fibre-reinforced polymer laminates. Roads and Bridges - Drogi i Mosty, [S.l.], v. 13, n. 3, p. 189-202, apr. 2014. ISSN 2449-769X. Available at: <>. Date accessed: 24 Apr. 2018. doi: