Sudyka J., Harasim P., Kowalska-Sudyka M., Mechowski T.: Quality control of traffic speed deflectometer measurements on road network. Roads and Bridges – Drogi i Mosty, 20, 4, 2021, 441-450, DOI: 10.7409/rabdim.021.026
DOI: https://doi.org/10.7409/rabdim.021.026
Google Scholar
Deep P., Andersen M.B., Rasmussen S., Marradi A., Thom N.H., Presti D.L.: Simulating deflection of a jointed rigid pavement under rolling wheel deflectometer (RAPTOR) loading. In: Raab C. (eds) Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements – Mairepav9. Lecture Notes in Civil Engineering, Springer, Cham, 76, 2020, 859-870, DOI: 10.1007/978-3-030-48679-2_80
DOI: https://doi.org/10.1007/978-3-030-48679-2_80
Google Scholar
Zofka A., Sudyka J., Maliszewski M., Harasim P., Sybilski D.: Alternative approach for interpreting traffic speed deflectometer results. Journal of the Transportation Research Board, 2457, 1, 2014, 12-18, DOI: 10.3141/2457-02
DOI: https://doi.org/10.3141/2457-02
Google Scholar
Graczyk M., Zofka A., Rafa J., Sudyka J.: Analytical solution of pavement deflections and its application to the TSD measurements. Transport Research International Documentation, Proceedings of 26th ARRB Conference – Research driving efficiency, Sydney, New South Wales, 2014
Google Scholar
Lukanen E.O., Stubstad R., Briggs R.: Temperature predictions and adjustment factors for asphalt pavement. Turner-Fairbank Highway Research Center, Publication no. FHWA-RD-98-085, McLean, VA, USA, 2000
Google Scholar
Gedafa D.S., Hossain M., Romanoschi S.A.: Perpetual pavement temperature prediction model. Road Materials and Pavement Design, 15, 1, 2014, 55-65, DOI: 10.1080/14680629.2013.852610
DOI: https://doi.org/10.1080/14680629.2013.852610
Google Scholar
Alavi M.Z., Pouranian M.R., Hajj E.Y.: Prediction of asphalt pavement temperature profile with finite control volume method. Journal of the Transportation Research Board, 2456, 1, 2014, 96-106, DOI: 10.3141/2456-10
DOI: https://doi.org/10.3141/2456-10
Google Scholar
Ntramah S., Tutu K., Tuffour Y., Adams C.A., Adanu E.: Evaluation of selected empirical models for asphalt pavement temperature prediction in tropical climate: The case of Ghana. Sustainability, 15, 22, 2023, Article ID: 15846, DOI: 10.3390/su152215846
DOI: https://doi.org/10.3390/su152215846
Google Scholar
Sedighian-Fard M., Solatifar N.: Development of a non-linear regression-based model for prediction of depth temperature of asphalt layers using LTPP data – case study: Ohio, USA. Transportation Engineering Quarterly, 13, 3, Serial No. 52, 2022, 1587-1600, DOI: 10.22119/jte.2021.217101.2426
Google Scholar
Diefenderfer B.K., Al-Qadi I.L., Diefenderfer S.D.: Model to predict pavement temperature profile: development and validation. Journal of Transportation Engineering, 132, 2, 2006, 162-167, DOI: 10.1061/(ASCE)0733-947X(2006)132:2(162)
DOI: https://doi.org/10.1061/(ASCE)0733-947X(2006)132:2(162)
Google Scholar
Minhoto M.J.C., Pais J.C., Pereira P.A.A., Picado-Santos L.G.: Predicting asphalt pavement temperature with a three-dimensional finite element method. Transportation Research Record: Journal of the Transportation Research Board, 1919, 1, 2005, 96-110, DOI: 10.1177/0361198105191900111
DOI: https://doi.org/10.1177/0361198105191900111
Google Scholar
Hermansson Å.: Mathematical model for calculation of pavement temperatures: comparison of calculated and measured temperatures. Transportation Research Record: Journal of the Transportation Research Board, 1764, 1, 2001, 180-188, DOI: 10.3141/1764-19
DOI: https://doi.org/10.3141/1764-19
Google Scholar
Lekea A., Steyn W.J.vdM.: Performance of pavement temperature prediction Models. Applied Scientes, 13, 7, 2023, Article ID: 4164, DOI: 10.3390/app13074164
DOI: https://doi.org/10.3390/app13074164
Google Scholar
Khroustalev B.M., Liu Tingguo, Akeliev V.D., Li Zhongyu, Aliakseyeu H.Yu., Zankаvich V.V.: Heat resistance and heat-and-mass transfer in road pavements. ENERGETIKA, Proceedings of CIS higher education institutions and power engineering associations, 62, 6, 2019, 536-546, DOI: 10.21122/1029-7448-2019-62-6-536-546 (in Russian)
DOI: https://doi.org/10.21122/1029-7448-2019-62-6-536-546
Google Scholar
Mohseni O., Stefan H.G.: A monthly streamflow model. Water Resources Research, 34, 5, 1998, 1287-1298, DOI: 10.1029/97WR02944
DOI: https://doi.org/10.1029/97WR02944
Google Scholar
Gu X., Liang X., Dong Q.: Numerical simulation of long-term pavement temperature field. Proceedings of GeoShanghai 2018 International Conference: Transportation Geotechnics and Pavement Engineering. Springer, Singapore, 2018
DOI: https://doi.org/10.1007/978-981-13-0011-0_43
Google Scholar
Yavuzturk C., Ksaibati K., Chiasso A.D.: Assessment of temperature fluctuations in asphalt pavement due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering, 17, 4, 2005, 465-475, DOI: 10.1061/(ASCE)0899-1561(2005)17:4(465)
DOI: https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(465)
Google Scholar
Zhang N., Wu G., Chen B., Cao C.: Numerical model for calculating the unstable state temperature in asphalt pavement structure. Coatings, 9, 4, 2019, Article ID: 271, DOI: 10.3390/coatings9040271q
DOI: https://doi.org/10.3390/coatings9040271
Google Scholar
Adwan I., Milad A., Abdullah N.H., Widyatmoko I., Mubaraki M., Mat Yazid M.R., Yusoff N.I.M.: Predicting asphalt pavement temperature by using neural network and multiple linear regression approach in the Eastern Mediterranean region. Journal of Engineering Science and Technology, 17, 1, 2022, 15-32
Google Scholar
Wang X., Zhao J., Li Q., Fang N., Wang P., Ding L., Li S.: A hybrid model for prediction in asphalt pavement performance based on support vector machine and grey relation analysis. Journal of Advanced Transportation, 1, 2020, Article ID: 7534970, DOI: 10.1155/2020/7534970
DOI: https://doi.org/10.1155/2020/7534970
Google Scholar
Zarządzenie nr 21 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 17 czerwca 2019 roku w sprawie diagnostyki stanu nawierzchni i wybranych elementów korpusu drogi (in Polish)
Google Scholar
Solatifar N., Abbasghorbani M., Kavussi A., Sivilevičius H.: Prediction of depth temperature of asphalt layers in hot climate area. Journal of Civil Engineering and Management, 24, 7, 2018, 516-525, DOI: 10.3846/jcem.2018.6162
DOI: https://doi.org/10.3846/jcem.2018.6162
Google Scholar
Dynatest International A/S. ELMOD user’s manual (ELMOD5) Dynatest Engineering A/S, A/S Reg. No. 63.866 Denmark, 2014
Google Scholar
Stanisz A., Tadeusiewicz R.: Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny. StatSoft, 2, Kraków 2007 (in Polish)
Google Scholar
Jańczewski D., Różycki C., Synoradzki L.: Projektowanie procesów technologicznych: matematyczne metody planowania eksperymentów. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2010 (in Polish)
Google Scholar
Nwanganga F., Chapple M.: Practical machine learning in R, 1st ed. John Wiley and Sons, Indianapolis, 2020
DOI: https://doi.org/10.1002/9781119591542
Google Scholar
Box G.E.P., Cox D.R.: An analysis of transformations. Journal of the Royal Statistical Society, Series B (Methodological), 26, 2, 1964, 211-252
DOI: https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
Google Scholar
Lander J.P., Włodarz M.: R dla każdego: zaawansowane analizy i grafika statystyczna. In: Dane i Analizy. APN Promise, Warszawa, 2018 (in Polish)
Google Scholar
Chollet F., Allaire J.J.: Deep Learning: praca z językiem R i biblioteką Keras. Helion, Gliwice, 2019 (in Polish)
Google Scholar
Rigabadi A., Rezaei Zadeh Herozi M., Rezagholilou A.: An attempt for development of pavements temperature prediction models based on remote sensing data and artificial neural network. International Journal of Pavement Engineering, 23, 9, 2021, 2912–2921, DOI: 10.1080/10298436.2021.1873334
DOI: https://doi.org/10.1080/10298436.2021.1873334
Google Scholar
McShane S.L., Glinow M.A.V., Sharma R.R.: Organizational behavior: emerging knowledge and practice for the real world. Tata McGraw Hill, New Delhi, 2011
Google Scholar
Hastie T., Tibshirani R., Friedman J.H.: The elements of statistical learning: data mining, inference, and prediction, 2nd ed. in Springer series in statistics. Springer, New York, NY, 2009
DOI: https://doi.org/10.1007/978-0-387-84858-7
Google Scholar