Stanton T.E.: Expansion of concrete through reaction between cement and aggregate. Proceedings of the American Society of Civil Engineers, 66, 10, 1940, 1781-1811
Google Scholar
Glinicki M.A.: Problem reaktywności kruszywa – cz. 1 rozpoznanie. Budownictwo, Technologie, Architektura, 1, 2019, 58-60
Google Scholar
Jackiewicz-Rek W.: Reaktywność alkaliczna kruszywa. Materiały Budowlane, 11, 2015, 196-198
Google Scholar
Fernandes I., dos Anjos Ribeiro M., Broekmans M.A.T.M., Sims I. (eds.): Petrographic atlas: Characterisation of Aggregates Regarding Potential Reactivity to Alkalis: RILEM TC 219-ACS recommended guidance AAR-1.2, for use with the RILEM AAR-1.1 Petrographic Examination Method. Springer, Dordrecht, 2016
Google Scholar
Grattan-Bellew P.E.: Microcrystalline quartz, undulatory extinction and the alkali-silica reaction. In: Poole A.B. (ed.): Proceedings of the 9th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), London, 1992, 383-394
Google Scholar
Garbacik A., Glinicki M.A., Jóźwiak-Niedźwiedzka D., Adamski G., Gibas K.: Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich. Narodowe Centrum Badań i Rozwoju, Generalnej Dyrekcja Dróg Krajowych i Autostrad, 2019
Google Scholar
National Ready Mixed Concrete Association: Guide Specifications for Concrete Subject to Alkali-Silica Reactions. 1993
Google Scholar
Ali A., Sajid M., Ali L., Usman M.: Petrographic study of coarse aggregate to evaluate their susceptibility to Alkali Silica Reactivity in different rocks of District Shangla, Swat, Pakistan. Journal of Himalayan Earth Science, 47, 2, 2014, 125-139
Google Scholar
Sims I., Nixon P.: RILEM Recommended Test Method AAR-0: Detection of Alkali-Reactivity Potential in Concrete – Outline guide to the use of RILEM methods in assessments of aggregates for potential alkali-reactivity. Materials and Structures, 36, 7, 2003, 472-479
Google Scholar
Thomas M.D.A., Fournier B., Folliard K.J., Resendez Y.A.: Alkali-Silica Reactivity Field Identification Handbook. Report No. FHWA-HIF-12-022, Federal Highway Administration, Washington, 2011
Google Scholar
Antolik A., Jóźwiak-Niedźwiedzka D.: ASR induced by chloride-and formate-based deicers in concrete with non-reactive aggregates. Construction and Building Materials, 400, 2023, ID article: 132811, DOI: 10.1016/j.conbuildmat.2023.132811
Google Scholar
Ratajczak T., Hycnar E., Jończyk W.: Złoża antropogeniczne a wartość surowcowa zgromadzonych kopalin na przykładzie KWB „Bełchatów” SA. Górnictwo i Geoinżynieria, 33, 2, 2009, 383-390
Google Scholar
Pyy H., Holt E., Ferreira M.: An Initial Survey on the Occurrence of Alkali Aggregate Reaction in Finland. Customer Report VTT-CR-00554-12, VTT Technical Research Centre of Finland, 2012
Google Scholar
Holt E., Ferreira M.: Addressing ASR in concrete construction in Finland. Nordic – Baltic Mini Seminar, Alkali Aggregate Reactions in Concrete (AAR), Riga, 2013
Google Scholar
Lagerblad B., Trägårdh J.: Slowly reacting aggregates in Sweden – mechanism and conditions for reactivity in concrete. In: Poole A.B. (ed.): Proceedings of the 9th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), London, 1992, 570-578
Google Scholar
Jensen V., Merz C.: Alkali-aggregate reaction in Norway and Switzerland-survey investigations and structural damage. In: Broekmans M.A.T.M., Wigum B.J. (eds.): Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), Trondheim, 2008, 785-795
Google Scholar
Wyszomirski P., Szydłak T., Pichniarczyk P.: Charakterystyka surowcowa wybranych kruszyw mineralnych NE Polski w aspekcie trwałości betonów. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energii PAN, 96, 2016, 363-378
Google Scholar
Gibas K., Jóźwiak-Niedźwiedzka D., Glinicki M.A.: Petrograficzna identyfikacja kruszyw podatnych na wystąpienie reakcji alkalicznej w betonie. Prace Instytutu Ceramiki i Materiałów Budowlanych, 10, 30, 2017, 68-78
Google Scholar
Naziemiec Z., Pabiś-Mazgaj E.: Preliminary evaluation of the alkali reactivity of crushed aggregates from glacial deposits in Northern Poland. Roads and Bridges – Drogi i Mosty, 16, 3, 2017, 203-222, DOI: 10.7409/rabdim.017.014
Google Scholar
Jóźwiak-Niedźwiedzka D., Gibas K., Glinicki M.A.: Petrographic identification of reactive minerals in domestic aggregates and their classification according to RILEM and ASTM recommendations. Roads and Bridges – Drogi i Mosty, 16, 3, 2017, 223-239, DOI: 10.7409/rabdim.017.015
Google Scholar
Pabiś-Mazgaj E., Naziemiec Z., Mierzejewska-Kmieć A.: Ocena możliwości wystąpienia minerałów potencjalnie reaktywnych alkalicznie w kruszywie polodowcowym. Kruszywa Mineralne, t. 2. Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław, 2018, 161-172
Google Scholar
Dubiniewicz A.K.: Petrographic assessment of the occurrence of potentially alkali-reactive silica in post-glacial gravels of North-Western Poland and North-Eastern Germany. Roads and Bridges – Drogi i Mosty, 22, 3, 2023, 259-273, DOI: 10.7409/rabdim.023.013
Google Scholar
Dolar-Mantuani L.M.M.: Undulatory extinction in quartz used for identifying potentially alkali-reactive rocks. In: Oberholster R.E. (ed.): Proceedings of the 5th International Conference on Alkali-Aggregate Reactions in Concrete, Cape Town, 1981
Google Scholar
Schulz W.: Zur Bedeutung der Korngröße bei Geschiebezählungen. Der Geschiebesammler, 29, 3, 1996, 91-102
Google Scholar
Jurys L.: Otoczaki i głazy narzutowe - kopaliną towarzyszącą bez złóż? Górnictwo Odkrywkowe, 45, 6, 2003, 73-76
Google Scholar
Jensen V.: Alkali Aggregate Reactions in Southern Norway. Doctor Technical Thesis, The Norwegian Institute of Technology, University of Trondheim, 1993
Google Scholar
Lagerblad B., Trägårdh J.: Alkalisilikareaktioner i svensk betong. CBI rapport 4:92, Swedish Cement and Concrete Research Institute, Stockholm, 1992
Google Scholar
Buck A.D.: Alkali reactivity of strained quartz as a constituent of concrete aggregate. Cement, Concrete, and Aggregates, 5, 2, 1983, 131-133
Google Scholar
Antolik A., Jóźwiak-Niedźwiedzka D.: Assessment of the alkali-silica reactivity potential in granitic rocks. Construction and Building materials, 295, 2021, ID article: 123690, DOI: 10.1016/j.conbuildmat.2021.123690
Google Scholar
Ratnam M.: Monograph on Alkali Aggregate Reaction, Central Soil & Materials Research Station, New Delhi, 2008
Google Scholar
Rogers C.: Petrographic Examination of Aggregate and Concrete in Ontario. In: Erlin B., Stark D. (eds.): Petrography Applied to Concrete and Concrete Aggregates. ASTM International, STP1061-EB, West Conshohocken, 1990, 5-31
Google Scholar
Wakizaka Y.: Alkali-silica reactivity of Japanese rocks. Developments in geotechnical engineering, 84, 2000, 293-303, DOI: 10.1016/S0165-1250(00)80024-3
Google Scholar
Marfil S.A., Maiza P.J.: Assessment of the potential alkali reactivity of rhyolitic rocks from Argentina. IAEG2006 paper number 769, The 10th IAEG International Congress, Nottingham, 2006
Google Scholar
Sims I., Nixon P.: RILEM Recommended Test Method AAR-1: Detection of potential alkali-reactivity of aggregates – Petrographic method. Materials and Structures, 36, 7, 2003, 480-496
Google Scholar
Roberts D.: The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues. Tectonophysics, 365, 1-4, 2003, 283-299, DOI: 10.1016/S0040-1951(03)00026-X
Google Scholar
Velasco-Torres A., Alaejos P., Soriano J.: Comparative study of the alkali-silica reaction (ASR) in granitic aggregates. Estudios Geológicos, 66, 1, 2010, 105-114, DOI: 10.3989/egeol.40133.091
Google Scholar
Deer W.A., Howie R.A., Zussman J.: An introduction to the rock-forming minerals. Mineralogical Society of Great Britain and Ireland, 2013, DOI: 10.1180/DHZ
Google Scholar