Little D.N., Petersen J.C.: Unique Effects of Hydrated Lime Filler on the Performance-Related Properties of Asphalt Cements: Physical and Chemical Interactions Revisited. Journal of Materials in Civil Engineering, 17, 2, 2005, 207-218. DOI: 10.1061/(ASCE)0899-1561(2005)17:2(207)
Google Scholar
Jiménez F.P., Recasens R.M., Martínez A.: Effect of Filler Nature and Content on the Behaviour of Bituminous Mastics. Road Materials and Pavement Design, 9, sup1, 2008, 417-431, DOI: 10.1080/14680629.2008.9690177
Google Scholar
Das A.K., Singh D.: Investigation of rutting, fracture and thermal cracking behavior of asphalt mastic containing basalt and hydrated lime fillers. Construction and Building Materials, 141, 2017, 442-452. DOI: 10.1016/j.conbuildmat.2017.03.032
Google Scholar
Das A.K., Singh D.: Effects of Basalt and Hydrated Lime Fillers on Rheological and Fracture Cracking Behavior of Polymer Modified Asphalt Mastic. Journal of Materials in Civil Engineering, 30, 3, 2018, ID article: 04018011, DOI: 10.1061/(asce)mt.1943-5533.0002196
Google Scholar
Rahim A., Milad A., Yusoff N.I., Airey G., Thom N.: Stiffening effect of fillers based on rheology and micromechanics models. Applied Sciences, 11, 14, 2021, ID article: 6521, DOI: 10.3390/app11146521
Google Scholar
Alfaqawi R.M., Airey G., Lo Presti D., Grenfell J.: Effects of mineral fillers on bitumen mastic chemistry and rheology. In: Transport Infrastructure and Systems, Proceedings of the AIIT International Congress on Transport Infrastructure and Systems, TIS 2017. CRC Press/Balkema, 359-364, https://iris.unipa.it/handle/10447/604136, 21.11.2024
Google Scholar
Cheng Y., Tao J., Jiao Y., Tan G., Guo Q., Wang S., Ni P.: Influence of the properties of filler on high and medium temperature performances of asphalt mastic. Construction and Building Materials, 118, 2016, 268-275, DOI: 10.1016/j.conbuildmat.2016.05.041
Google Scholar
Masad E., Jandhyala V.K., Dasgupta N., Somadevan N., Shashidhar N.: Characterization of air void distribution in asphalt mixes using X-ray computed tomography. Journal of Materials in Civil Engineering, 14, 2, 2002, 122-129, DOI: 10.1061/(ASCE)0899-1561(2002)14:2(122)
Google Scholar
Lagos-Varas M., Movilla-Quesada D., Raposeiras A.C., Castro-Fresno D., Muñoz-Cáceres O., Andrés-Valeri V.C., Rodríguez-Esteban M.A.: Viscoelasticity modelling of asphalt mastics under permanent deformation through the use of fractional calculus. Construction and Building Materials 329, 2022, ID article: 127102, DOI: 10.1016/j.conbuildmat.2022.127102
Google Scholar
Steineder M., Hofko B.: Assessing the impact of filler properties, moisture, and aging regarding fatigue resistance of asphalt mastic regarding fatigue resistance of asphalt mastic. Road Materials and Pavement Design, 24, 12, 2023, 2811-2826, DOI: 10.1080/14680629.2023.2172066
Google Scholar
Chaudhary M., Saboo N., Gupta A., Miljković M.: Contribution of mineral filler to the fatigue damage behaviour of bituminous mastic. Construction and Building Materials, 334, 2022, ID article: 127120, DOI: 10.1016/j.conbuildmat.2022.127120
Google Scholar
Ryś D., Szydłowski C.: Consideration of pseudo strain energy in determination of fatigue life and microdamage healing of asphalt mastics. International Journal of Fatigue, 181, 2024, ID article: 108164, DOI: 10.1016/j.ijfatigue.2024.108164
Google Scholar
Büchner J., Ryś D., Trifunović S., Wistuba M.P.: Development and application of asphalt binder relaxation test in different dynamic shear rheometers. Construction and Building Materials, 364, 2023, ID article: 129929, DOI: 10.1016/j.conbuildmat.2022.129929
Google Scholar
Büchner J., Wistuba M.: Analysis of low temperature relaxation properties of asphalt binder and asphalt mastic using a dynamic shear Rheometer. In: Hoff I., Mork Helge, Saba R. (eds.): Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Volume 2, CRC Press, London, 2022, 508-516, DOI: 10.1201/9781003222897-47
Google Scholar
Anderson D.A., Dukatz E.L., Claine Petersen J.: The Effect of Antistrip Additives on the Properties of Asphalt Cement. Association of Asphalt Paving Technologists Proceedings, 51, 1982, 298-317
Google Scholar
Johansson L.S.: Influence of hydrated lime on bitumen hardening. Royal Institute of Technology, Stockholm, 1995
Google Scholar
Kennedy T.W., Ping W.V.: An Evaluation of Effectiveness of Antistripping Additives in Protecting Asphalt Mixtures from Moisture Damage. Association of Asphalt Paving Technologists Proceedings, 60, 1991, 231-263
Google Scholar
Little D.N., Epps J.A.: The Benefits of Hydrated Lime in Hot Mix Asphalt. National Lime Association, Nevada, USA, 2001
Google Scholar
Lesueur D., Petit J., Ritter H-J.: The mechanisms of hydrated lime modification of asphalt mixtures: a state-of-the-art review. Road Materials and Pavement Design, 14, 1, 2013, 1-16, DOI: 10.1080/14680629.2012.743669
Google Scholar
Jaskuła P.: Analiza niszczącego oddziaływania wody i mrozu na mieszanki mineralno-asfaltowe. Praca doktorska, Politechnika Gdańska, Gdańsk, 2004
Google Scholar
Majidzadeh K., Brovold F.: Effect of water on bitumen – aggregate mixtures. Highway Research Board, Washington, USA, 1968
Google Scholar
Lesueur D., Little D.: Effect of Hydrated Lime on Rheology, Fracture, and Aging of Bitumen. Transportation Research Record: Journal of the Transportation Research Board, 1661, 1999, 93-105, DOI: 10.3141/1661-14
Google Scholar
Iwański M., Mazurek G.: Hydrated lime as the anti-aging bitumen agent. Procedia Engineering 57, 2013, 424-432, DOI: 10.1016/j.proeng.2013.04.055
Google Scholar
Witczak M.W., Bari J.: Development of a E* Master Curve Database for Lime Modified Asphaltic Mixtures, Arizona State University, Tempe, 2004
Google Scholar
Sebaaly P.E., Hitti E., Weitzel D.: Effectiveness of Lime in Hot-Mix Asphalt Pavements. Transportation Research Record: Journal of the Transportation Research Board, 1832, 1, 2003, 34-41, DOI: 10.3141/1832-05
Google Scholar
Nawierzchnie asfaltowe na drogach krajowych – WT-2 2014 – część I. Mieszanki mineralno-asfaltowe. Wymagania Techniczne, Generalna Dyrekcja Dróg Krajowych i Autostrad, Warszawa, 2014
Google Scholar
Mastoras F., Varveri A., van Tooren M., Erkens S.: Effect of mineral fillers on ageing of bituminous mastics. Construction and Building Materials, 276, 2021, ID article: 122215, DOI: 10.1016/j.conbuildmat.2020.122215
Google Scholar
Lesueur D., Teixeira A., Lázaro M.M., Andaluz D., Ruiz A.: A simple test method in order to assess the effect of mineral fillers on bitumen ageing. Construction and Building Materials, 117, 2016, 182-189, DOI: 10.1016/j.conbuildmat.2016.05.003
Google Scholar
Gardel V., Planche J., Dreessen S.: A new performance related test method for rutting prediction: MSCRT. In: Loizos A., Partl M.N., Scarpas T., Al-Qadi I.L. (Eds.): Advanced Testing and Characterization of Bituminous Materials, CRC Press, Boca Raton, 2009, 971-980
Google Scholar
Hintz C., Velasquez R., Johnson C., Bahia H.: Modification and validation of linear amplitude sweep test for binder fatigue specification. Transportation Research Record: Journal of the Transportation Research Board, 2207, 1, 2011, 99-106. DOI: 10.3141/2207-13
Google Scholar
Hintz C., Bahia H.: Understanding mechanisms leading to asphalt binder fatigue in the dynamic shear rheometer. Road Materials and Pavement Design, 14, sup2, 2013, 231-251, DOI: 10.1080/14680629.2013.818818
Google Scholar
Modified Asphalt Research Center, University of Wisconsin-Madison: Linear Amplitude Sweep, https://uwmarc.wisc.edu/linear-amplitude-sweep.php, 21.11.2024
Google Scholar
Wesołowska M., Ryś D.: Analysis of the fatigue life of neat and modified bitumens using linear amplitude sweep test. Roads and Bridges – Drogi i Mosty, 17, 4, 2018, 317-336, DOI: 10.7409/rabdim.018.020
Google Scholar
Hospodka M., Hofko B., Blab R.: Introducing a new specimen shape to assess the fatigue performance of asphalt mastic by dynamic shear rheometer testing. Materials and Structures, 51, 2018, ID article: 46, DOI: 10.1617/s11527-018-1171-6
Google Scholar