Mackiewicz P., Szydło A., Krawczyk B.: Influence of the construction technology on the texture and roughness of concrete pavements. Roads and Bridges - Drogi i Mosty, 17, 2, 2018, 111-126, DOI: 10.7409/rabdim.018.007
Google Scholar
Yang J., Jiang G.: Experimental study on properties of pervious concrete pavement materials. Cement and Concrete Research, 33, 3, 2003, 381-386, DOI: 10.1016/S0008-8846(02)00966-3
DOI: https://doi.org/10.1016/S0008-8846(02)00966-3
Google Scholar
Scholz M., Grabowiecki P.: Review of permeable pavement systems. Building and Environment, 42, 11, 2007, 3830-3836, DOI: 10.1016/j.buildenv.2006.11.016
DOI: https://doi.org/10.1016/j.buildenv.2006.11.016
Google Scholar
Tennis P.D., Leming M.L., Akers D.J.: Pervious concrete pavements. Portland Cement Association, Skokie, 2004
Google Scholar
Shu X., Huang B., Wu H., Dong Q., Burdette E.G.: Performance comparison of laboratory and field produced pervious concrete mixtures. Construction and Building Materials, 25, 8, 2011, 3187-3192, DOI: 10.1016/j.conbuildmat.2011.03.002
DOI: https://doi.org/10.1016/j.conbuildmat.2011.03.002
Google Scholar
Lian C., Zhuge Y.: Optimum mix design of enhanced permeable concrete – an experimental investigation. Construction and Building Materials, 24, 12, 2010, 2664-2671, DOI: 10.1016/j.conbuildmat.2010.04.057
DOI: https://doi.org/10.1016/j.conbuildmat.2010.04.057
Google Scholar
Nguyen D.H., Sebaibi N., Boutouil M., Leleyter L., Baraud F.: A modified method for the design of pervious concrete mix. Construction and Building Materials, 73, 2014, 271-282. DOI: 10.1016/j.conbuildmat.2014.09.088
DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.088
Google Scholar
Schulze J.: Influence of water-cement ratio and cement content on the properties of polymer-modified mortars. Cement and Concrete Research, 29, 6, 1999, 909-915, DOI: 10.1016/S0008-8846(99)00060-5
DOI: https://doi.org/10.1016/S0008-8846(99)00060-5
Google Scholar
Kanadasan J., Razak H.A.: Mix design for self-compacting palm oil clinker concrete based on particle packing. Materials & Design, 56, 2014, 9-19, DOI: 10.1016/j.matdes.2013.10.086
DOI: https://doi.org/10.1016/j.matdes.2013.10.086
Google Scholar
Zaetang Y., Wongsa A., Sata V., Chindaprasirt P.: Use of lightweight aggregates in pervious concrete. Construction and Building Materials, 48, 2013, 585-591, DOI: 10.1016/j.conbuildmat.2013.07.077
DOI: https://doi.org/10.1016/j.conbuildmat.2013.07.077
Google Scholar
ASTM C192 / C192M-19. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, 2019
Google Scholar
Nguyen D.H., Boutouil M., Sebaibi N., Leleyter L., Baraud F.: Valorization of seashell by-products in pervious concrete pavers. Construction and Building Materials, 49, 2013, 151-160, DOI: 10.1016/j.conbuildmat.2013.08.017
DOI: https://doi.org/10.1016/j.conbuildmat.2013.08.017
Google Scholar
Kuo W.T., Liu C.C., Su D.S.: Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cement and Concrete Composites, 37, 2013, 328-335, DOI: 10.1016/j.cemconcomp.2013.01.001
DOI: https://doi.org/10.1016/j.cemconcomp.2013.01.001
Google Scholar
Sata V., Wongsa A., Chindaprasirt P.: Properties of pervious geopolymer concrete using recycled aggregates. Construction and Building Materials, 42, 2013, 33-39, DOI: 10.1016/j.conbuildmat.2012.12.046
DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.046
Google Scholar
Tho-in T., Sata V., Chindaprasirt P., Jaturapitakkul C.: Pervious high-calcium fly ash geopolymer concrete. Construction and Building Materials, 30, 2012, 366-371, DOI: 10.1016/j.conbuildmat.2011.12.028
DOI: https://doi.org/10.1016/j.conbuildmat.2011.12.028
Google Scholar
Mishra K., Zhuge Y., Karunasena K.: Clogging mechanism of permeable concrete: A review. Concrete 2013: Understanding Concrete, Gold Coast, Australia, 2013, https://eprints.usq.edu.au/24554/ (25.03.2022)
Google Scholar
Neithalath N., Sumanasooriya M. S., Deo O.: Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Materials Characterization, 61, 8, 2010, 802-813, DOI: 10.1016/j.matchar.2010.05.004
DOI: https://doi.org/10.1016/j.matchar.2010.05.004
Google Scholar
Sonebi M., Bassuoni M.: Investigating the effect of mixture design parameters on pervious concrete by statistical modelling. Construction and Building Materials, 38, 2013, 147-154, DOI: 10.1016/j.conbuildmat.2012.07.044
DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.044
Google Scholar
Yahia A., Kabagire K.D.: New approach to proportion pervious concrete. Construction and Building Materials, 62, 2014, 38-46, DOI: 10.1016/j.conbuildmat.2014.03.025
DOI: https://doi.org/10.1016/j.conbuildmat.2014.03.025
Google Scholar
Haselbach L.M., Valavala S., Montes F.: Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems. Journal of Environmental Management, 81, 1, 2006, 42-49, DOI: 10.1016/j.jenvman.2005.09.019
DOI: https://doi.org/10.1016/j.jenvman.2005.09.019
Google Scholar
Rehder B., Banh K., Neithalath N.: Fracture behavior of pervious concretes: the effects of pore structure and fibers. Engineering Fracture Mechanics, 118, 2014, 1-16, DOI: 10.1016/j.engfracmech.2014.01.015
DOI: https://doi.org/10.1016/j.engfracmech.2014.01.015
Google Scholar