Nagórska M.: On a certain method of selection of domain for finite element modeling of the layered elastic half-space in the static analysis of flexible pavement. Archives of Civil Engineering, 58, 4, 2012, 477-501
Google Scholar
Złotowska M.: Dobór rozmiarów obszaru wielowarstwowej półprzestrzeni sprężystej do modelowania MES w analizie statycznej nawierzchni drogowej podatnej. Autobusy - Eksploatacja i Testy, 12, 2016, 1532-1535
Google Scholar
Tutka P., Nagórski R.: Walidacja modeli numerycznych nawierzchni drogowej podatnej z użyciem elementów nieskończonych. Autobusy - Eksploatacja i Testy, 12, 2016, 1400-1404
Google Scholar
Kim M.: Three-dimensional finite element analysis of flexible pavements considering nonlinear pavement foundation behavior. PhD dissertation, University of Illinois, Urbana, USA, 2007
Google Scholar
Nagórski R., Nagórska M.: Weryfikacja modeli skończenie elementowych w analizie statycznej konstrukcji nawierzchni drogowych podatnych. Prace Naukowe, Budownictwo, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2014
Google Scholar
Nishiyama T., Bhatti M.A., Lee H.D.: Development of 3-D finite element model to quantify bond level of thin concrete overlay. Transportation Research Board 82 Annual Meeting, 2003
Google Scholar
Bandeira A.A., Merighi J.V., Fortes R.M.: Finite element model to study structural pavements design - investigation in terms of stresses and strains considering elastoplastic frictional contact mechanics technologies. The Fifth International Conference on Maintenance and Rehabilitation of Pavements and Technological Control MAIREPAV5, Park City, Utah, USA, 2007
Google Scholar
Beer G., Meek J.L.: 'Infinite domain' elements. International Journal for Numerical Methods in Engineering, 17, 1, 1981, 43-52
Google Scholar
Elseifi M.A., Al-Qadi I.L., Yoo P.J.: Viscoelastic modeling and field validation of flexible pavements. Journal of engineering mechanics, 132, 2, 2006, 172-178
Google Scholar
Wang H., Al-Qadi I.L.: Importance of nonlinear anisotropic modeling of granular base for predicting maximum viscoelastic pavement responses under moving vehicular loading. Journal of Engineering Mechanics, 139, 1, 2012, 29-38
Google Scholar
Yang Y.B., Hung H.H.: A 2.5 D finite/infinite element approach for modelling visco-elastic bodies subjected to moving loads. International Journal for Numerical Methods in Engineering, 51, 11, 2001, 1317-1336
Google Scholar
Zbiciak A., Brzeziński K., Michalczyk R.: Analiza wpływu obciążeń dynamicznych na zachowanie się lepko-sprężystego modelu nawierzchni drogowej. Logistyka, 3, 2014, 7037-7045
Google Scholar
Wójcik-Grząba I., Kwaśniewski L.: Verification of the hemispherical finite element model of elastic space. Roads and Bridges - Drogi i Mosty, 14, 1, 2015, 67-79
Google Scholar
ABAQUS Analysis User’s Manual, Ver. 6.8, 2008. Hibbit, Karlsson & Sorensen Inc., USA, 2008
Google Scholar
Minhoto M., et al.: Predicting asphalt pavement temperature with a three-dimensional finite element method. Transportation Research Record: Journal of the Transportation Research Board, 1919, 2005, 96-110
Google Scholar
Al-Qadi I.L., Elseifi M., Yoo P.J.: In-situ validation of mechanistic pavement finite element modeling. In: International Conference on Accelerated Pavement Testing, 2, 2004, Minneapolis, Minnesota, USA
Google Scholar
Pirabarooban S., Zaman M., Tarefder R.A.: Evaluation of rutting potential in asphalt mixes using finite element modeling. In: The Transportation Factor, Annual Conference and Exhibition of the Transportation Association of Canada, Canada, 2003
Google Scholar
Zbiciak A.: Constitutive modelling and numerical simulation of dynamic behaviour of asphalt-concrete pavement. Engineering Transactions, 56, 4, 2008, 311-324
Google Scholar
Hopman P.C.: The Visco-Elastic Multilayer Program VEROAD. Heron, 41, 1, 1996, 71-91
Google Scholar