Roads and Bridges - Drogi i Mosty
22, 2, 2023, 141-165

Skid resistance of road markings: literature review and field test results

Tomasz E. Burghardt Mail
https://orcid.org/0000-0002-8476-3253
M. Swarovski Gesellschaft m.b.H., Wipark, 14. Straße 11, 3363 Neufurth, Austria
Birgit Köck Mail
https://orcid.org/0009-0009-9234-4647
M. Swarovski Gesellschaft m.b.H., Wipark, 14. Straße 11, 3363 Neufurth, Austria
Anton Pashkevich Mail
https://orcid.org/0000-0002-4066-5440
Cracow University of Technology, Faculty of Civil Engineering, Chair of Transportation Systems, 24 Warszawska St., 31-155 Cracow, Poland
Alexander Fasching Mail
https://orcid.org/0009-0002-7371-1332
M. Swarovski Gesellschaft m.b.H., Wipark, 14. Straße 11, 3363 Neufurth, Austria
Published: 2023-06-30

Abstract

Skid resistance of road markings belongs to their important performance parameters, significantly influencing the safety of all road users, particularly when the roadway is wet – yet it is very seldom addressed. A review of the sparse literature on this topic is provided herein. To demonstrate the effect of the selection of anti-skid particles on Pendulum Test Value (PTV) of road markings, a field experiment was done with five drop-on materials. Whereas PTV of the asphalt road surface was 49, covering it with a paint without any glass beads or anti-skid particles caused PTV decrease to 35; utilisation of glass beads led to an increase in PTV to 45 and the use of a mixture of glass beads with 10% of corundum provided PTV 50. The achieved initial PTV and its retention upon the usage of road markings depended on the selection of the anti-skid particles. The initial PTV were in the range of 45–65, after 10 months they decreased to 41-49 (i.e. by 6-32%). The results confirm that not all anti-skid particles are equal and that the initial PTV cannot be used to reliably predict long-term performance.

Keywords


anti-skid particles, corundum, glass beads, glass granulate, road safety, toxic elements, waterborne paint.

Full Text:

PDF PDF PDF

References


Steyvers F.J., De Waard D.: Road-edge delineation in rural areas: effects on driving behaviour. Ergonomics, 43, 2, 2000, 223-238, DOI: 10.1080/001401300184576

Burghardt T.E., Mosböck H., Pashkevich A., Fiolić M.: Horizontal road markings for human and machine vision. Transportation Research Procedia, 48, 2000, 3622-3633, DOI: 10.1016/j.trpro.2020.08.089

Pocock B.W., Rhodes C.C.: Principles of glass-bead reflectorization. Highway Research Board Bulletin, 57, 1952, 32-48

Babić D., Burghardt T.E., Babić D.: Applica¬tion and characteristics of waterborne road mark-ing paint. International Journal for Traffic and Transport Engineering, 5, 2, 2015, 150-169, DOI: 10.7708/ijtte.2015.5(2).06

Schnell T., Zwahlen H.: Driver preview distances at night based on driver eye scanning recordings as a function of pavement marking retroreflectivities. Transportation Research Record: Journal of the Trans¬portation Research Board, 1692, 1, 1999, 129-141, DOI: 10.3141/1692-14

Burghardt T.E., Pashkevich A., Babić D., Mosböck H., Babić D., Żakowska L.: Microplastics and road markings: the role of glass beads and loss esti¬mation. Transportation Research Part D: Trans¬port and Environment, 102, 2022, 103123, DOI: 10.1016/j.trd.2021.103123

Eigenmann L.: Aggregate elements for improving anti-skid and visibility properties of traffic regulating markings on roadway pavements, United States Patent 3,958,891, United States Patent and Trademark Of¬fice, Washington, 1976

Harlow A.: Skid resistance and pavement marking materials, International Surface Friction Conference: Roads and Runways: Improving Safety Through Assessment and Design, Christchurch, 2005

Babić D., Fiolić M., Babić D., Gates T.: Road mark-ings and their impact on driver behaviour and road safety: a systematic review of current findings. Jour¬nal of Advanced Transportation, 2020, 7843743; DOI: 10.1155/2020/7843743

Burghardt T.E., Babić D., Babić D.: Application of waterborne road marking paint in Croatia: two years of road exposure. Proceedings of International Confer-ence on Traffic and Transport Engineering, Belgrade, 2016, 1092-1096

Burghardt T.E., Ščukanec A., Babić D., Babić D.: Durability of waterborne road marking systems with various glass beads. Proceedings of International Conference on Traffic Development, Logistics and Sustainable Transport, Opatija, 2017, 51-58

Burghardt T.E., Babić D., Pashkevich A.: Sustainability of thin layer road markings based on their service life. Transportation Research Part D: Transport and Environment, 109, 2022, 103339, DOI:10.1016/j.trd.2022.103339

Fwa T.F.: Skid resistance determination for pavement management and wet-weather road safety. Internation-al Journal of Transportation Science and Technology, 6, 3, 2017, 217-227, DOI: 10.1016/j.ijtst.2017.08.001

Yu M., You Z., Wu G., Kong L., Liu C., Gao J.: Measurement and modeling of skid resis-tance of asphalt pavement: a review. Construc-tion and Building Materials, 260, 2020, 119878, DOI: 10.1016/j.conbuildmat.2020.119878

Fwa T.F.: Determination and prediction of pave¬ment skid resistance–connecting research and prac-tice. Journal of Road Engineering, 1, 2021, 43-62, DOI: 10.1016/j.jreng.2021.12.001

Guo F., Pei J., Zhang J., Li R., Zhou B., Chen Z.: Study on the skid resistance of asphalt pavement: a state-of-the-art review and future prospective. Construction and Building Materials, 303, 2021, 124411, DOI: 10.1016/j.conbuildmat.2021.124411

Anderson D.A., Henry J.J., Hayhoe G.F.: Prediction and significance of wet skid resistance of pavement marking materials. Transportation Research Record, 893, 1982, 27-32

Januszke R.M., Richards D.M.: Non-skid road mark-ing paint system. Proceedings of 15th Australian Road Research Board Conference, Darwin, 1990, 181-195

de Witt A.J., Smith R.A.F., Visser A.T.: Durability and cost effectiveness of road marking paint. South African Transport Conference, Pretoria, 2000

Pasetto M., Manganaro A.: Study on the effect of sur¬face texture saturation of road pavements with drop on road markings. Proceedings of 5th Pan-European Conference on Planning for Minerals and Transport Infrastructure, Sarajevo, 2006, 275-284

Rao G.V., Mouli S.C., Boddeti N.K.: Anti skid methods and materials-skid effects and their remedial methods. International Journal of Engineering and Technology, 2, 2010, 87-92

Karim M., Chyc-Cies J., Hartman B., Schick D., Dechkoff C.: Evaluation of a skid resistant material at high incident intersection locations. Conference of the Transportation Association of Canada, Fredericton, 2012

Pasetto M., Barbati S.D.: Experimental investigation on road marking distress evolution: beyond testing, quality assurance and maintenance improvement. Advanced Materials Research, 723, 2013, 846-853, DOI: 10.4028/www.scientific.net/AMR.723.846

Asdrubali F., Buratti C., Moretti E., D’Alessandro F., Schiavoni S.: Assessment of the perfor-mance of road markings in urban areas: the out-comes of the CIVITAS Renaissance project. Open Transportation Journal, 7, 2013, 7-19, DOI: 10.2174/1874447801307010007

Kajánek P., Ondrejka R.: Pedestrian safety at cros¬sings. Acta Tecnología, 1, 2, 2015, 1-4

Richard C., Doré G., Lemieux C., Bilodeau J. P., Haure-Touzé J.: Albedo of pavement surfacing materials: in situ measurements. In: Guthrie W.S. (ed.): Cold Regions Engineering 2015: Developing and Maintaining Resilient Infrastructure, 181-192, DOI: 10.1061/9780784479315.017

Siyahi A., Kavussi A., Boroujerdian B.M.: Enhancing skid resistance of two-component road marking paint using mineral and recycled materials. International Journal of Transportation Engineering, 3, 3, 2016, 195-205, DOI: 10.22119/IJTE.2016.14773

Kozak P., Matuszkova R., Radimsky M.: Mea¬surement of acoustic properties of the safety anti-skid modification - ROCBINDA™. Ad-vanced Materials Research, 1145, 2018, 140-145, DOI: 10.4028/www.scientific.net/AMR.1145.140

Naidoo S., Steyn W.: Performance of thermoplastic road marking material. Journal of the South African Institution of Civil Engineering, 60, 2, 2018, 9-22, DOI: 10.17159/2309-8775/2018/v60n2a2

Nassiri S., Rodin III H., Yekkalar M.: Evaluation of motorcyclists’ and bikers’ safety on wet pavement markings. PackTrans and Washington State University, Seattle, 2018

Coves-Campos A., Bañón L., Coves-García J., Ivorra S.: In situ study of road marking durabili¬ty using glass microbeads and antiskid aggregates as drop-on materials. Coatings, 8, 10, 2018, 371, DOI: 10.3390/coatings8100371

Hadizadeh E., Pazokifard S., Mirabedini S. M., Ashrafian H.: Optimizing practical properties of MMA-based cold plastic road marking paints using mixture experimental design. Progress in Organic Coatings, 147, 2020, 105784, DOI: 10.1016/j. porgcoat.2020.105784

Purohit K., Rahman M., Price A., Woodside A.: Assessment of preformed 3D-thermoplastic road markings for long-term durability, skid resis-tance and texture functionality. In: Raab C. (ed.): Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements - Mairepav9, Springer, Cham, 2020, 965-974, DOI: 10.1007/978-3-030-48679-2_90

Pasetto M., Barbati S.D.: Definition and validation of a new methodical approach for friction eval-uations of dropped-on products for road markings. 3rd International Surface Friction Conference, Gold Coast, 2011

Piyatrapoomi N., Weligamage J., Kumar A., Bunker J.: Identifying relationship between skid resistance and road crashes using probability-based approach. 2nd International Safer Roads Conference, Cheltenham, 2008

Ivan J.N., Ravishanker N., Jackson E., Aronov B., Guo S.: A statistical analysis of the effect of wet-pavement friction on highway traffic safety. Journal of Transportation Safety & Security, 4, 2, 2012, 116-136, DOI: 10.1080/19439962.2011.620218

Pitaksringkarn J., Tanwanichkul L., Yamthale K.: A correlation between pavement skid resistance and wet-pavement related accidents in Thailand. MATEC Web of Conferences, 192, 2018, 02049, DOI: 10.1051/matecconf/201819202049

Tournier I., Dommes A., Cavallo V.: Review of safety and mobility issues among older pedestrians. Accident Analysis & Prevention, 91, 2016, 24-35, DOI: 10.1016/j.aap.2016.02.031

Cleland B.S., Walton D., Thomas J.A.: The relative effects of road markings on cycle stability. Safety Science, 43, 2, 2005, 75-89, DOI: 10.1016/j.ssci.2005.01.001

Standard EN 1436:2018 Road marking materials – Road marking performance for road users and test methods

Standard EN 13036-4:2011 Road and airfield sur-face characteristics – Test methods – Part 4: method for measurement of slip/skid resistance of a surface – The pendulum test

Standard ASTM E 303:1993 Standard test method for measuring surface frictional properties using the British pendulum tester

Rozporządzenie Ministra Infrastruktury z dn. 3 lipca 2003 r., załącznik nr 2: Szczegółowe warunki technicz¬ne dla znaków drogowych poziomych i warunki ich umieszczania na drogach. Dz. U. nr 220, poz. 2181, 2019

Standard ONR 22441:2015 Richtlinien zur Spezifikation von Bodenmarkierungen und Bodenmarkierungs-material

Manual on Uniform Traffic Control Devices for Streets and Highways. United States Department of Transportation, Federal Highway Administration, Washington, 2009

Giles C., Sabey B., Cardew K.H.: Development and performance of the portable skid-resistance tester. Symposium on Skid Resistance, New York, 1962, 50-74, DOI: 10.1520/STP44406S

Chu L., Guo W., Fwa T.F.: Theoretical and practical engineering significance of British pendulum test. International Journal of Pavement Engineering, 23, 1, 2020, DOI: 10.1080/10298436.2020.1726351

Hiti M., Ducman V.: Analysis of the slider force calibration procedure for the British pendulum skid resistance tester. Measurement Science and Technology, 25, 2, 2014, 025013, DOI: 10.1088/0957-0233/25/2/025013

Guo W., Chu L., Fwa T.F.: Evaluation of calibration procedures of British pendulum tester. Journal of Testing and Evaluation, 49, 3, 2020, 1729-1746, DOI: 10.1520/JTE20200288

Guo W., Chu L., Fwa T.F.: Improved calibration procedure for British pendulum tester. In: Pa¬sindu H.R., Bandara S., Mampearachchi W.K., Fwa T.F. (eds.): Road and Airfield Pavement Technology, Springer, Cham, 2022, 209-219, DOI: 10.1007/978-3-030-87379-0_15

Guo W., Chu L., Fwa T.F.: Mechanistic harmonization of British pendulum test measurements. Measurement, 182, 2021, 109618, DOI: 10.1016/j.measurement.2021.109618

Primožič V., Hiti M.: Investigation of the British pendulum calibration uncertainty by Monte Carlo simulation. Measurement Science and Technology, 33, 1, 2021, 015004, DOI: 10.1088/1361-6501/ac2c4b

Lundkvist S.O., Isacsson U.: Prediction of road marking performance. Journal of Transportation Engineering, 133, 6, 2007, 341-346, DOI: 10.1061/(ASCE)0733-947X(2007)133:6(341)

Wang D.W., Schacht A., Schmidt S., Oeser M., Steinauer B., Chen X.H.: Continuous evaluation of the road skid resistance with ViaFriction. Applied Mechanics and Materials, 405, 2013, 1791-1794, DOI:10.4028/www.scientific.net/AMM.405- 408.1791

Steinauer B., Oeser M., Kemper D., Schacht A., Klein G.M.: Dynamische Messung der Griffigkeit von Fahrbahnmarkierungen. Verkehrstechnik Heft V 239, Berichte der Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2014

Schacht A., Oeser M.: Bewertung der Griffigkeit von Fahrbahnmarkierungen bei Naesse. Straße und Autobahn, 65, 8, 2014, 583-590

Wälivaara B.: Validering av VTI-PFT version 4: mätningar på plana och profilerade vägmarkeringar. Swedish National Road and Transport Research Institute VTI, Linköping, 2007, http://www.diva-portal. org/smash/get/diva2:670355/FULLTEXT01.pdf, 20.12.2022

Andriejauskas T., Vorobjovas V., Mielonas V.: Evaluation of skid resistance characteristics and measurement methods. Proceedings of the 9th International Conference “Environmental Engineering”, Vilnius, 2014

Rasol M., Schmidt F., Ientile S., Adelaide L., Nedjar B., Kane M., Chevalier C.: Progress and monitoring opportunities of skid resistance in road transport: a critical review and road sensors. Remote Sensing, 13, 18, 2021, 3729, DOI: 10.3390/rs13183729

Standard EN 1423:2012 Road marking materials. Drop on materials. Glass beads, antiskid aggregates and mixtures of the two

Sandhu N.K., Axe L., Ndiba P.K., Jahan K.: Metal and metalloid concentrations in domestic and imported glass beads used for highway marking. Environmental Engineering Science, 30, 7, 2013, 387-392, DOI: 10.1089/ees.2013.0023

dos Santos É.J., Herrmann A.B., Prado S.K., Fantin E.B., dos Santos V.W., de Oliveira A.V.M., Curtius A.J.: Determination of toxic elements in glass beads used for pavement marking by ICP OES. Microchemical Journal, 108, 2013, 233-238, DOI: 10.1016/j.microc.2012.11.003

Specification AP-S0042. Glass beads for use in pavement marking paints. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering Division, Highett, 2013

Burghardt T.E., Pashkevich A.: Green Public Procurement criteria for road marking materials from insiders' perspective. Journal of Cleaner Production, 298, 2021, 126521, DOI: 10.1016/j.jclepro.2021.126521

Burghardt T.E., Ettinger K., Köck B., Hauzenberger C.: Glass beads for road markings and other industrial usage: crystallinity and hazardous elements. Case Studies in Construction Materials, 17, 2022, e01213, DOI: 10.1016/j.cscm.2022.e01213

Migaszewski Z.M., Gałuszka A., Dołęgowska S., Michalik A.: Glass microspheres in road dust of the city of Kielce (south-central Poland) as markers of traffic-related pollution. Journal of Hazardous Materials, 431, 2021, 125355, DOI: 10.1016/j.jhazmat.2021.125355

Pike A.M., Songchitruksa P.: Predicting pavement marking service life with transverse test deck data. Transportation Research Record: Journal of the Transportation Research Board, 2482, 1, 2015, 16-22, DOI: 10.3141/2482-03

Ryś D., Judycki J., Jaskuła P.: Analysis of effect of overloaded vehicles on fatigue life of flexible pavements based on weigh in motion (WIM) data. International Journal of Pavement Engineering, 17, 8, 2016, 716-726, DOI: 10.1080/10298436.2015.1019493

Burghardt T.E., Pashkevich A.: Emissions of volatile organic compounds from road marking paints. Atmospheric Environment, 193, 2018, 153-157, DOI: 10.1016/j.atmosenv.2018.08.065

Sarasua W., Clarke D., Davis W.: Evaluation of interstate pavement marking retroreflectivity. Report FHWA-SC-03-01. South Carolina Department of Transportation, Columbia, 2003

Burghardt T.E., Pashkevich A., Żakowska L.: Influence of volatile organic compounds emissions from road marking paints on ground-level ozone formation: case study of Kraków, Poland. Transportation Research Procedia, 14, 2016, 714-723, DOI: 10.1016/j.trpro.2016.05.338

Burghardt T.E., Pashkevich A., Bartusiak J.: Solution for a two-year renewal cycle of structured road markings. Roads and Bridges – Drogi i Mosty, 20, 1, 2021, 5-18, DOI: 10.7409/rabdim.021.001

Cruz M., Klein A., Steiner V.: Sustainability assessment of road marking systems. Transportation Research Procedia, 14, 2016, 869-875, DOI: 10.1016/j.trpro.2016.05.035

Wenzel K.M., Burghardt T.E., Pashkevich A., Buckermann W.A.: Glass beads for road markings: surface damage and retroreflection decay study. Applied Sciences, 12, 4, 2022, 2258, DOI: 10.3390/app12042258


Skid resistance of road markings: literature review and field test results

  
Burghardt, Tomasz E. et al. Skid resistance of road markings: literature review and field test results. Roads and Bridges - Drogi i Mosty, [S.l.], v. 22, n. 2, p. 141-165, jun. 2023. ISSN 2449-769X. Available at: <>. Date accessed: 27 Apr. 2024. doi:http://dx.doi.org/10.7409/rabdim.023.007.