Roads and Bridges - Drogi i Mosty
16, 4, 2017, 265-277

Defining the domain and boundary conditions for finite element model of flexible road pavement

Roman Nagórski Mail
Warsaw University of Technology, Faculty of Civil Engineering, Road and Bridge Institute, 16 Armii Ludowej Avenue, 00-637 Warsaw
Paweł Tutka Mail
Warsaw University of Technology, Faculty of Civil Engineering, Road and Bridge Institute, 16 Armii Ludowej Avenue, 00-637 Warsaw
Magdalena Złotowska Mail
Warsaw University of Technology, Faculty of Civil Engineering, Road and Bridge Institute, 16 Armii Ludowej Avenue, 00-637 Warsaw
Published: 2017-12-30

Abstract

The paper presents three methods for defining a finite cylindrical-type domain for finite element analysis of an elastic multi-layered half-space subjected to a rotationally symmetric vertical load distributed over a circular area, thus providing a mechanistic model of a flexible road pavement. For three sets of boundary conditions the methods ensure the consistency between the maximum deflection and the exact calculated value for a multi-layered half-space with compromising the accuracy of the key strain values. The first case uses standard support conditions at the finite element model boundaries – fixed in the direction perpendicular to that plane and sliding in the tangential direction. The other two cases use half-infinite elements – at the base and at the side wall of the domain. The first method, as an additional benefit, enables determining the exact value of the maximum deflection of pavement that can be used in the second and in the third of the described methods.

Keywords


defining the domain and boundary conditions, finite element method, flexible road pavement, multi-layered elastic half-space.

Full Text:

PDF PDF

References


Nagórska M.: On a certain method of selection of domain for finite element modeling of the layered elastic half-space in the static analysis of flexible pavement. Archives of Civil Engineering, 58, 4, 2012, 477-501

Złotowska M.: Dobór rozmiarów obszaru wielowarstwowej półprzestrzeni sprężystej do modelowania MES w analizie statycznej nawierzchni drogowej podatnej. Autobusy - Eksploatacja i Testy, 12, 2016, 1532-1535

Tutka P., Nagórski R.: Walidacja modeli numerycznych nawierzchni drogowej podatnej z użyciem elementów nieskończonych. Autobusy - Eksploatacja i Testy, 12, 2016, 1400-1404

Kim M.: Three-dimensional finite element analysis of flexible pavements considering nonlinear pavement foundation behavior. PhD dissertation, University of Illinois, Urbana, USA, 2007

Nagórski R., Nagórska M.: Weryfikacja modeli skończenie elementowych w analizie statycznej konstrukcji nawierzchni drogowych podatnych. Prace Naukowe, Budownictwo, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2014

Nishiyama T., Bhatti M.A., Lee H.D.: Development of 3-D finite element model to quantify bond level of thin concrete overlay. Transportation Research Board 82 Annual Meeting, 2003

Bandeira A.A., Merighi J.V., Fortes R.M.: Finite element model to study structural pavements design - investigation in terms of stresses and strains considering elastoplastic frictional contact mechanics technologies. The Fifth International Conference on Maintenance and Rehabilitation of Pavements and Technological Control MAIREPAV5, Park City, Utah, USA, 2007

Beer G., Meek J.L.: 'Infinite domain' elements. International Journal for Numerical Methods in Engineering, 17, 1, 1981, 43-52

Elseifi M.A., Al-Qadi I.L., Yoo P.J.: Viscoelastic modeling and field validation of flexible pavements. Journal of engineering mechanics, 132, 2, 2006, 172-178

Wang H., Al-Qadi I.L.: Importance of nonlinear anisotropic modeling of granular base for predicting maximum viscoelastic pavement responses under moving vehicular loading. Journal of Engineering Mechanics, 139, 1, 2012, 29-38

Yang Y.B., Hung H.H.: A 2.5 D finite/infinite element approach for modelling visco-elastic bodies subjected to moving loads. International Journal for Numerical Methods in Engineering, 51, 11, 2001, 1317-1336

Zbiciak A., Brzeziński K., Michalczyk R.: Analiza wpływu obciążeń dynamicznych na zachowanie się lepko-sprężystego modelu nawierzchni drogowej. Logistyka, 3, 2014, 7037-7045

Wójcik-Grząba I., Kwaśniewski L.: Verification of the hemispherical finite element model of elastic space. Roads and Bridges - Drogi i Mosty, 14, 1, 2015, 67-79

ABAQUS Analysis User’s Manual, Ver. 6.8, 2008. Hibbit, Karlsson & Sorensen Inc., USA, 2008

Minhoto M., et al.: Predicting asphalt pavement temperature with a three-dimensional finite element method. Transportation Research Record: Journal of the Transportation Research Board, 1919, 2005, 96-110

Al-Qadi I.L., Elseifi M., Yoo P.J.: In-situ validation of mechanistic pavement finite element modeling. In: International Conference on Accelerated Pavement Testing, 2, 2004, Minneapolis, Minnesota, USA

Pirabarooban S., Zaman M., Tarefder R.A.: Evaluation of rutting potential in asphalt mixes using finite element modeling. In: The Transportation Factor, Annual Conference and Exhibition of the Transportation Association of Canada, Canada, 2003

Zbiciak A.: Constitutive modelling and numerical simulation of dynamic behaviour of asphalt-concrete pavement. Engineering Transactions, 56, 4, 2008, 311-324

Hopman P.C.: The Visco-Elastic Multilayer Program VEROAD. Heron, 41, 1, 1996, 71-91


Defining the domain and boundary conditions for finite element model of flexible road pavement

  
Nagórski, Roman; Tutka, Paweł; Złotowska, Magdalena. Defining the domain and boundary conditions for finite element model of flexible road pavement. Roads and Bridges - Drogi i Mosty, [S.l.], v. 16, n. 4, p. 265-277, dec. 2017. ISSN 2449-769X. Available at: <>. Date accessed: 18 Oct. 2018. doi:http://dx.doi.org/10.7409/rabdim.017.017.