Roads and Bridges - Drogi i Mosty
12, 2, 2013, 131-146

Chemical resistance of mortars made of cements with calcareous fly ash

Monika Dąbrowska Mail
Silesian University of Technology, Faculty of Civil Engineering
Zbigniew Giergiczny Mail
Silesian University of Technology, Faculty of Civil Engineering


This paper presents the results of chemical resistance of mortars made of blended cements with addition of calcareous fly ash. The test results showed that using calcareous fly ash as a cement constituent exerted a positive influence on sulphate resistance and chloride permeability, whereas carbonation resistance decreased with increasing amount of calcareous fly ash. Mechanical activation (grinding) and/or higher addition of calcareous fly ash in cement composition increased fly ash activity, which influenced positively the resistance to chemical attack. Portland-composite cements CEM II where the calcareous fly ash and granulated blast furnace slag were applied together, showed the highest resistance against all types of chemical corrosion.


calcareous fly ash, carbonation, chloride permeability, sulphate corrosion

Full Text:



Giergiczny Z.: Rola popiołów lotnych wapniowych i krzemionkowych w kształtowaniu właściwości współ- czesnych spoiw budowlanych i tworzyw cementowych. Wydawnictwo Politechniki Krakowskiej, Kraków, 2006

Papayianni I., Tsimas S., Moutsatsou A.: Standarization aspects concerning high calcium fly ashes. Word of Coal Ash Conference, Lexington, 2009

Studium wykonalności dla Projektu PO IG nr POIG 01.01.02-24-005/09 Innowacyjne spoiwa cementowe i betony z wykorzystaniem popiołu lotnego wapiennego,

Sisomphon K., Franke L.: Carbonation rates of concretes containing high volume of pozzolanic materials. Cement and Concrete Research, 37, 12, 2007, 1647 - 1653

Rostami V., Shao Y., Boyd A.J., He Z.: Microstructure of cement paste subject to early carbonation curing. Cement and Concrete Research, 42, 1, 2012, 186 - 193

Stanish K.D., Hooton R.D., Thomas M.D.A.: Testing the chloride penetration resistance of concrete: A literature review. FHWA Contract DTFH61-97-R-00022 “Prediction of Chloride Penetration in Concrete”. Toronto, Ontario, 2000

Broomfield J. P.: Corrosion of steel in concrete: understanding, investigation and repair. Taylor & Francis, 2007

Ann K.Y., Ahn J.H., Ryou J.S.: The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Construction and Building Materials, 23, 1, 2009, 239 - 245

Mehta P.K.: Sulfate attack in marine environment, in: Materials science of concrete: sulfate attack mechanisms, Marchand J. and Sklany J. (eds.). The American Ceramic Society, Westerville, 1999

Lee S.T.: Performance of mortars exposed to different sulfate concentrations. KSCE Journal of Civil Engineering, 16, 4, 2012, 601 - 609

Dehwah H.A.F.: Effect of sulfate concentration and associated cation type on concrete deterioration and morphological changes in cement hydrates. Construction and Building Materials, 21, 1, 2007, 29 - 39

Bakharev T.: Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35, 2005, 1233 - 1246

Khunthogkeaw J., Tangtermsirikul S., Leelewat T.: A study on carbonation depth prediction for fly ash concrete. Construction and Building Materials. 20, 9, 2006, 744 - 753

Chindaprasirt P., Chotithanorm C., Cao H.T., Sirivivatnanon V.: Influence of fly ash fineness on the chloride penetration of concrete. Construction and Building Materials, 21, 2, 2007, 356 - 361

Naik T.R., Singh S.S., Hassain M.M.: Permeability of concrete containing large amounts of fly ash. Cement and Concrete Research, 24, 5, 1994, 913 - 922

Chindaprasirt P., Kanchanda P., Sathonsaowaphak A., Cao H.T.: Sulfate resistance of blended cements containing fly ash and rice fly ash. Construction and Building Materials, 21, 6, 2007, 1356 - 1361

Sumer M.: Compressive strength and sulfate resistance properties of concrete containing Class F and Class C fly ashes. Construction and Building Materials, 34, 2012, 531 - 536

PN-EN 197-1:2012 Cement – Część 1: Skład. wymagania i kryteria zgodności dotyczące cementów powszechnego użytku

prEN 12390-12:2010 Testing hardened concrete – Part 12: Determination of the potential carbanation resistance of concrete. Accelerated carbonation method

ASTM C 1202-05 Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration (Rapid Chloride Permeability Test – RCPT)

PN-B-19707:2003 Cement. Cement specjalny. Skład. wymagania i kryteria zgodności. Załącznik C: Oznaczanie odporności cementu na agresję siarczanową

CEN/TC 51/WG12/TG1. Sulphate Resistance Testing – State of the Art, 2006

Kurdowski W.: Chemia cementu i betonu. PWN, Stowarzyszenie Producentów Cementu, Warszawa-Kraków, 2010

Burden D.: The durability of concrete containing high levels of fly ash. Portland Cement Association, 2006

Atiş C.D.: Accelerated carbonation and testing of concrete made with fly ash. Construction and Building Materials, 17, 3, 2003, 147 - 152

Jackiewicz-Rek W., Woyciechowski P.: Ocena podatności na karbonatyzację napowietrzonych betonów z dużą zawartością popiołu. Cement Wapno Beton, 78, 5, 2011, 249 - 256

Papadakis V.G., Tsimas S.: Supplementary cementing materials in concrete. Part I: efficiency and design. Cement and Concrete Research, 32, 10, 2002, 1525 - 1532

Naik T.R., Singh S.S., Hossain M.M.: Permeability of concrete incorporating large quantities of fly ash. CBU Report No. 180, Center for By-Product Utilization, University of Wisconsin-Milwaukee, A Porgress Report for EPRI, Palo Alto, 1993

Wang S., Llamazos E., Baxter L., Fonseca F.: Durability of biomass fly ash concrete: Freezing and thawing and rapid chloride permeability tests. Fuel, 87, 3, 2008. 359 - 364

Naik T.R., Singh S.S.: Use of high calcium fly ash in cement based construction materials. Proceedings of Fifth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Milwaukee, 1995, 1 - 44

Neville A.M.: Właściwości betonu. Polski Cement, Kraków, 2000

Deja J.: Trwałość zapraw i betonów żużlowo-alkalicznych. Polski Biuletyn Ceramiczny, 83, Kraków, 2004

Duval R., Hornain H.: La durabilité du béton vis-ŕ-vis des eaux agressives, in: La durabilité des bétons, J. Baron and J.P. Ollivier (eds.). Presses Ponts et Chaussées, Paris, 1992, 351 - 391

Regourd M.: Carbonation accélérée et résistance des ciments aux agressoves, in: Proceeding of the RILEM International Symposium on Carbonation of Concrete. Cement and Concrete Association, Fulmer, 1976

Chindaprasirt P., Homwuttiwong S., Sirivivatnanon V.: Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research, 34, 7, 2004, 1087 - 1092

ACI Committee 232 (232.2R-96). Use of fly ash in concrete. American Concrete Institute, Farmington Hill, 1996

Taylor H.F.W., Gollob R.S.: Microstructural and micro- analytical studies of sulfate attack II. Sulfate-resisting Portland cement: Ferrite composition and hydration chemistry. Cement and Concrete Research, 24, 7, 1994, 1374 - 1358

Liu S., Yan P., Feng J.: Effect of limestone powder and fly ash on magnesium sulfate resistance of mortar. Journal od Wuhan University of Technology, 25, 4, 2010, 700 - 703

Chemical resistance of mortars made of cements with calcareous fly ash

Dąbrowska, Monika; Giergiczny, Zbigniew. Chemical resistance of mortars made of cements with calcareous fly ash. Roads and Bridges - Drogi i Mosty, [S.l.], v. 12, n. 2, p. 131-146 , feb. 2014. ISSN 2449-769X. Available at: <>. Date accessed: 19 Feb. 2019. doi: