Vaz D.C., Almeida R.A.B., Borges A.R.J.: Wind Action Phenomena Associated with Large-Span Bridges. in: Yaghoubi H. (ed.): Bridge Engineering, InTech, 2018, DOI: 10.5772/intechopen.73061
Google Scholar
Zhang Y., Cardiff P., Keenahan J.: Wind-induced phenomena in long-span cable-supported bridges: A comparative review of wind tunnel tests and computational fluid dynamics modelling. Applied Sciences, 11, 4, 2021, 1642, DOI: 10.3390/app11041642
Google Scholar
Jurado J.A., Hernández S., Nieto F., Mosquera A.: Bridge Aeroelasticity. Sensitivity Analysis and Optimal Design. WIT Press, 2011
Google Scholar
Brancaleoni F., Diana G., Faccioli E., Fiammenghi G., Firth I.P.T., Gimsing N.J., Jamiolkowski M., Sluszka P., Solari G., Valensise G., Vullo E.: The Messina Strait Bridge: A Challenge and a Dream. CRC Press, London, 2009, DOI: 10.1201/9781482266368
Google Scholar
Zhang X.: Wind Effect on Long Span Bridge, M. Eng. Thesis. Massachusetts Institute of Technology, 2012, https://dspace.mit.edu/handle/1721.1/74418, 31.10.2024
Google Scholar
Cai C., Montens S.: Wind Effects on Long-Span Bridges. In: Chen W.F., Duan L. (eds.): Bridge Engineering Handbook. CRC Press, Boca Raton, 2000
Google Scholar
Scanlan R.H., Jones N.P.: Aeroelastic Analysis of Cable-Stayed Bridges. Journal of Structural Engineering, 116, 2, 1990, 279-297, DOI: 10.1061/(ASCE)0733-9445(1990)116:2(279)
Google Scholar
Nieto F., Montoya M.C., Hernández S., Kusana I., Casteleiro A., Álvarez A.J., Jurado J.Á., Fontán A.: Aerodynamic and aeroelastic responses of short gap twin-box decks: Box geometry and gap distance dependent surrogate based design. Journal of Wind Engineering and Industrial Aerodynamics, 201, 2020, 104147, DOI: 10.1016/j.jweia.2020.104147
Google Scholar
Larsen A.: Aerodynamic aspects of the final design of the 1624 m suspension bridge across the Great Belt. Journal of Wind Engineering and Industrial Aerodynamics, 48, 2-3, 1993, 261-285, DOI: 10.1016/0167-6105(93)90141-A
Google Scholar
Bartoli G., Mannini C.: A simplified approach to bridge deck flutter. Journal of Wind Engineering and Industrial Aerodynamics, 96, 2, 2008, 229-256, DOI: 10.1016/j.jweia.2007.06.001
Google Scholar
Larose G.L., Livesey F.M.: Performance of streamlined bridge decks in relation to the aerodynamics of a flat plate. Journal of Wind Engineering and Industrial Aerodynamics, 69-71, 1997, 851-860, DOI: 10.1016/S0167-6105(97)00211-0
Google Scholar
Larsen A., Walther J.H.: Discrete vortex simulation of flow around five generic bridge deck sections. Journal of Wind Engineering and Industrial Aerodynamics, 77-78, 1998, 591-602, DOI: 10.1016/S0167-6105(98)00175-5
Google Scholar
Vicente M.A., González D.C., Fu G.: Static and Dynamic Testing of High-Speed Rail Bridges in Spain. Journal of Bridge Engineering, 20, 2, 2014, 06014006, DOI: 10.1061/(ASCE)BE.1943-5592.0000654
Google Scholar
Ubertini F., Hong A.L., Betti R., Materazzi A.L.: Estimating aeroelastic effects from full bridge responses by operational modal analysis. Journal of Wind Engineering and Industrial Aerodynamics, 99, 6-7, 2011, 786-797, DOI: 10.1016/j.jweia.2011.03.016
Google Scholar
Lee H., Moon J.: Aerodynamic Characteristics Evaluation of a Cable-Stayed Bridge Section with a New-Type Hybrid Fairing. Shock and Vibration, 2, 2021, 8899558, DOI: 10.1155/2021/8899558
Google Scholar
Balajewicz M., Nitzsche F., Feszty D.: Application of Multi-Input Volterra Theory to Nonlinear Multi-Degree-of-Freedom Aerodynamic Systems. AIAA Journal, 48, 1, 2012, 56-62, DOI: 10.2514/1.38964
Google Scholar
Scanlan R.H.: The action of flexible bridges under wind, II: Buffeting theory. Journal of Sound and Vibration, 60, 2, 1978, 201-211, DOI: 10.1016/S0022-460X(78)80029-7
Google Scholar
Wu T., Kareem A.: Bridge aerodynamics and aeroelasticity: A comparison of modeling schemes. Journal of Fluids and Structures, 43, 2013, 347-370, DOI: 10.1016/j.jfluidstructs.2013.09.015
Google Scholar
Sadrizadeh S., Martínez-López G., Ülker-Kaustell M., Karoumi R.: Aerodynamic analysis of simple girder bridges under construction phase. Applied Sciences, 11, 12, 2021, 5562, DOI: 10.3390/app11125562
Google Scholar
Smirnova E.: Analysis of long-span bridge fluctuations for finding its optimal safe operation. E3S Web Conference, 157, 4, 2020, 06038, DOI: 10.1051/e3sconf/202015706038
Google Scholar
Midas Engineering Software, Advanced Application 3, Completed State and Construction Stage Analyses of a Suspension Bridge, https://www.midasoft.com/hubfs/Programs/03.%20Suspension%20Bridge.pdf
Google Scholar
Midas nGen, Analysis Manual, https://midasngen.pl/download/Materia%C5%82y1_%20Analiza.pdf
Google Scholar
Grinderslev C., Lubek M., and Zhang Z.: Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling. Wind and Structures, 27, 6, 2018, 381-397, DOI: 10.12989/was.2018.27.6.381
Google Scholar
Kusano I., Jakobsen J.B., Snæbjörnsson J.T.: CFD simulations of a suspension bridge deck for different deck shapes with railings and vortex mitigating devices. IOP Conference Series: Materials Science and Engineering, 2nd Conference of Computational Methods in Offshore Technology and First Conference of Oil and Gas Technology, 700, 2019, 27-29, DOI: 10.1088/1757-899X/700/1/012003
Google Scholar
Fujino Y. and Siringoringo D.: Vibration Mechanisms and Controls of Long-Span Bridges: A Review. Structural Engineering International, 23, 3, 2013, 248-268, DOI: 10.2749/101686613X13439149156886
Google Scholar
Larsen A., Esdahl S., Andersen J.E., Vejrum T.: Storebælt suspension bridge – vortex shedding excitation and mitigation by guide vanes. Journal of Wind Engineering and Industrial Aerodynamics, 88, 2-3, 2000, 283-296, DOI: 10.1016/S0167-6105(00)00054-4
Google Scholar