Franklin K., Potcovaru A.M.: Autonomous Vehicle Perception Sensor Data in Sustainable and Smart Urban Transport Systems. Contemporary Readings in Law and Social Justice, 13, 1, 2021, 101-110, DOI: 10.22381/CRLSJ131202110
DOI: https://doi.org/10.22381/CRLSJ131202110
Google Scholar
Calvert S.C., Schakel W.J., Van Lint J.W.C.: Will Automated Vehicles Negatively Impact Traffic Flow?, Journal of Advanced Transportation, 2017, ID article: 3082781, DOI: 10.1155/2017/3082781
DOI: https://doi.org/10.1155/2017/3082781
Google Scholar
Fagnant D.J., Kockelman K.: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations, Transportation Research Part A: Policy and Practice, 77, 2015, 167-181, DOI: 10.1016/j.tra.2015.04.003
DOI: https://doi.org/10.1016/j.tra.2015.04.003
Google Scholar
Kamińska E.: The possibility of using automa-ted vehicles to provide support to people with disabilities in individual transport. Gospodarka Materiałowa & Logistyka, 2, 2021, 14-20, DOI: 10.33226/1231-2037.2021.2.3
DOI: https://doi.org/10.33226/1231-2037.2021.2.3
Google Scholar
Kamińska E.: Perspektywy rozwoju modeli mobilności w aspekcie współdzielenia usług, MaaS oraz autonomizacji transportu drogowego. Wydawnictwa Komunikacji i Łączności, Warszawa, 2021
Google Scholar
Kozaczka N., Gaca S.: Wpływ pojazdów zautomatyzowanych na ruch oraz projektowanie infrastruktury drogowej – próba oceny. Przegląd Komunikacyjny, 9, 2019, 21-27
Google Scholar
Khondaker B., Kattan L.: Variable Speed Limit: A Microscopic Analysis in a Connected Vehicle Environment. Transportation Research Part C: Emerging Technologies, 58, 2015, 146-159, DOI: 10.1016/j.trc.2015.07.014
DOI: https://doi.org/10.1016/j.trc.2015.07.014
Google Scholar
Rios-Torres J., Malikopoulos A.A.: Impact of Partial Penetrations of Connected and Automated Vehicles on Fuel Consumption and Traffic Flow. IEEE Transactions on Intelligent Vehicles, 3, 4, 453-462, DOI: 10.1109/TIV.2018.2873899
DOI: https://doi.org/10.1109/TIV.2018.2873899
Google Scholar
Friedrich B.: The Effect of Autonomous Vehicles on Traffic, in: Maurer M., Gerdes J., Lenz B., Winner H. (Eds): Autonomous Driving. Springer, Berlin/Heidelberg, 2016, 317-334, DOI: 10.1007/978-3-662-48847-8_16
DOI: https://doi.org/10.1007/978-3-662-48847-8_16
Google Scholar
Zhou M., Qu X., Jin S.: On the impact of coopera-tive autonomous vehicles in improving freeway merging: a modified intelligent driver model-based approach. IEEE Transactions on Intelligent Transportation Systems, 18, 6, 2017, 1422–1428, DOI: 10.1109/TITS.2016.2606492
DOI: https://doi.org/10.1109/TITS.2016.2606492
Google Scholar
Rasouli A., Tsotsos J.K.: Autonomous Vehicles That Interact With Pedestrians: A Survey of Theory and Practice. IEEE Transactions on Intelligent Transportation Systems, 21, 3, 2020, 900-918, DOI: 10.1109/TITS.2019.2901817
DOI: https://doi.org/10.1109/TITS.2019.2901817
Google Scholar
Zhu H., Iryo-Asano M., Alhajyaseen W.K.M., Nakamura H., Dias C.: Interactions between autonomous vehicles and pedestrians at unsignalized mid-block crosswalks considering occlusions by opposing vehicles. Accident Analysis & Prevention, 163, 2021, ID article: 106468, DOI: 10.1016/j.aap.2021.106468
DOI: https://doi.org/10.1016/j.aap.2021.106468
Google Scholar
Sucha M.: Road users strategies and communication: driver-pedestrian interaction. Transport Research Arena 5th Conference: Transport Solutions from Research to Deployment, Paris, 2014
Google Scholar
Camenzind J., Hurlimann F.W., Konfliktstelle K.B.: Fußgangerstreifen. Zeitschrift fur Verkehrssicherheit, 24, 1, 1978, 14-20
Google Scholar
Schweizer T., Thomas C., Regli P.: Verhalten am Fussgangerstreifen. Fussverkehr Schweiz, Zurich, 2009
Google Scholar
Gaca D., Hogendorf A.: Podstawowe zasady funkcjonowania oraz porównania przejść dla pieszych typu zebra w Polsce i w Niemczech. Część II. Transport Miejski i Regionalny, 3, 2007, 31-36
Google Scholar
Himanen V., Kulmala R.: An Application of Logit Models in Analysing the Behaviour of Pedestrians and Car Drivers on Pedestrian Crossings. Accident Analysis and Prevention, 20, 3, 1988, 187-197, DOI: 10.1016/0001-4575(88)90003-6
DOI: https://doi.org/10.1016/0001-4575(88)90003-6
Google Scholar
Budzyński M., Gumińska L., Jeliński L., Kieć M.: Pedestrian safety in road traffic - studies, recommendations and proposed improvements. MATEC Web of Conferences, 122, 2017, ID article: 01002, DOI: 10.1051/matecconf/201712201002
DOI: https://doi.org/10.1051/matecconf/201712201002
Google Scholar
Fitzpatrick K., Turner S., Brewer M., Carlson P., Ullman B., Trout N., Park E.S., Whitacre J., Lalani N., Lord D.: Improving Pedestrian Safety at Unsignalized Crossings. Contractor’s Final Report –Appendices B to O, Transportation Research Board, Washington, 2006
Google Scholar
Gaca S., Kiec M.: Assessment of pedestrian risk at crossings with kinematic-probabilistic model. Transportation Research Record: Journal of the Transportation Research Board, 1, 2015, 129-137, DOI: 10.3141/2514-14
DOI: https://doi.org/10.3141/2514-14
Google Scholar
Lin P.S., Kourtellis A., Wang Z., Guo R.: Understanding Interactions between Drivers and Pedestrian Features at Signalized Intersections. Center for Urban Transportation Research, Tampa, 2015
DOI: https://doi.org/10.1061/9780784479810.009
Google Scholar
Varhelyi A.: Drivers’ Speed Behaviour at a Zebra Crossing: a Case Study. Accident Analysis & Prevention, 30, 6, 1998, 731-743, DOI: 10.1016/S0001-4575(98)00026-8
DOI: https://doi.org/10.1016/S0001-4575(98)00026-8
Google Scholar
Szagala P., Brzezinski A., Kiec M., Budzynski M., Wachnicka J., Pazdan S.: Pedestrian Safety at Mid-block Crossings on Dual Carriageway Roads in Polish Cities. Sustainability, 14, 9, 2022, ID article: 5703, DOI: 10.3390/su14095703
DOI: https://doi.org/10.3390/su14095703
Google Scholar
Budzynski M., Gobis A., Guminska L., Jelinski L., Kiec M., Tomczuk P.: Assessment of the Influence of Road Infrastructure Parameters on the Behaviour of Drivers and Pedestrians in Pedestrian Crossing Areas. Energies, 14, 12, 2021, ID article: 3559, DOI: 10.3390/en14123559
DOI: https://doi.org/10.3390/en14123559
Google Scholar
Pratticò F.G., Lamberti F., Cannavò A., Morra L., Montuschi P.: Comparing State-of-the-Art and Emerging Augmented Reality Interfaces for Autonomous Vehicle-to-Pedestrian Communication. IEEE Transactions on Vehicular Technology, 70, 2, 2021, 1157-1168, DOI: 10.1109/TVT.2021.3054312
DOI: https://doi.org/10.1109/TVT.2021.3054312
Google Scholar
Schneemann F., Gohl I.: Analyzing Driver-Pede-strian Interaction at Crosswalks: A Contribution to Autonomous Driving in Urban Environments. 2016 IEEE Intelligent Vehicles Symposium (IV), Gothen-burg, 2016, 38-43, DOI: 10.1109/IVS.2016.7535361
DOI: https://doi.org/10.1109/IVS.2016.7535361
Google Scholar
Azam M., Hassan S.A., Che Puan O.: Autonomous Vehicles in Mixed Traffic Conditions – A Bibliometric Analysis. Sustainability, 14, 17, 2022, ID article: 10743, DOI: 10.3390/su141710743
DOI: https://doi.org/10.3390/su141710743
Google Scholar
Bąk R.; Kieć M.: Influence of midblock pedestrian crossings on urban street capacity. Transportation Research Record, 2316, 1, 2012, 76-83, DOI: 10.3141/2316-09
DOI: https://doi.org/10.3141/2316-09
Google Scholar
Cascetta E., Carteni A., Francesco L.: Do autonomous vehicles drive like humans? A Turing approach and an application to SAE automation Level 2 cars. Transportation Research Part C: Emerging Technologies, 134, 2022, 103499, DOI: 10.1016/j.trc.2021.103499
DOI: https://doi.org/10.1016/j.trc.2021.103499
Google Scholar
Cartenì A.: The acceptability value of autonomous vehicles: A quantitative analysis of the willingness to pay for shared autonomous vehicles (SAVs) mobility services. Transportation Research Interdisciplinary Perspectives, 8, 2020, ID article: 100224, DOI: 10.1016/j.trip.2020.100224
DOI: https://doi.org/10.1016/j.trip.2020.100224
Google Scholar