Zillman J.: The physical impact of the disaster, in: Ingleton J. (ed.), Natural disaster management, Tudor Rose, Leicester, 1999
Google Scholar
Varnes D.J.: Slope movement types and processes, in: Landslides: analysis and control, Transportation Research Board Special Report, 176, 1978, 11-33
Google Scholar
Hungr O., Evans S.G., Bovis M., Hutchinson J.N.: Review of the classification of landslides of the flow type. Environmental & Engineering Geoscience, 7, 3, 2001, 221-238, DOI: 10.2113/gseegeosci.7.3.221
Google Scholar
Cui P., Zeng C., Lei Y.: Experimental analysis on the impact force of viscous debris flow. Earth Surface Processes and Landforms, 40, 12, 2015, 1644-1655, DOI: 10.1002/esp.3744
Google Scholar
AASHTO Standard Specifications for Highway Bridges, American Association of State Highway and Transportation Officials, Washington, 2002
Google Scholar
Zanchetta G., Sulpizio R., Pareschi M.T., Leoni F.M., Santacroce R.: Characteristics of May 5-6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): Relationships to structural damage and hazard zonation. Journal of Volcanology and Geothermal Research, 133, 1-4, 2004, 377-393, DOI: 10.1016/S0377-0273(03)00409-8
Google Scholar
Hu K., Wei F., Li Y.: Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China. Earth Surface Processes and Landforms, 36, 9, 2011, 1268-1278, DOI: 10.1002/esp.2155
Google Scholar
Takahashi T.: Debris flow. Annual Review of Fluid Mechanics, 13, 1, 1981, 57-77, DOI: 10.1146/annurev.fl.13.010181.000421
Google Scholar
Iverson R.M., George D.L., Logan M.: Debris-flow run-up on vertical barriers and adverse slopes. Journal of Geophysical Research: Earth Surface, 121, 12, 2016, 2333-2357, DOI: 10.1002/2016JF00393
Google Scholar
Gao L., Zhang L.M., Chen H.X.: Two-dimensional simulation of debris flow impact pressure on buildings. Engineering Geology, 226, 2017, 236-244, DOI: 10.1016/j.enggeo.2017.06.012
Google Scholar
Pudasaini S.P.: A general two-phase debris flow model. Journal of Geophysical Research: Earth Surface, 117, F3, 2012, DOI: 10.1029/2011JF002186
Google Scholar
Dai Z., Huang Y., Cheng H., Xu Q.: SPH model for fluid structure interaction and its application to debris flow impact estimation. Landslides, 14, 3, 2017, 917-928, DOI: 10.1007/s10346-016-0777-4
Google Scholar
Kattel P., Kafle J., Fischer J.T., Mergili M., Tuladhar B.M., Pudasaini S.P.: Interaction of two-phase debris flow with obstacles. Engineering Geology, 242, 2018, 197-217, DOI: 10.1016/j.enggeo.2018.05.023
Google Scholar
Wang Y., Liu X., Yao C., Li Y., Liu S., Zhang, X.: Finite release of debris flows around round and square piers. Journal of Hydraulic Engineering, 144, 12, 2018, 06018015, DOI: 10.1061/(ASCE)HY.1943-7900.0001542
Google Scholar
Wang Y., Liu X., Yao C., Li Y.: Debris-Flow Impact on Piers with Different Cross-Sectional Shapes. Journal of Hydraulic Engineering, 146, 1, 2020, 04019045, DOI: 10.1061/(ASCE)HY.1943-7900.0001656
Google Scholar
Yu X., Chen X., Wang H., Jia C.: Numerical Study on the Interaction Between Debris Flow Slurry and Check Dams Based on Fluid-Solid Coupling Theory. Geotechnical and Geological Engineering, 38, 3, 2020, 2427-2445, DOI: 10.1007/s10706-019-01160-0
Google Scholar
ANSYS Fluent Theory Guide, Release 15.0, ANSYS, Inc., Canonsburg, 2013
Google Scholar
Kang Z., Lee C., Law K., Ma A.: Debris Flow Research in China. Science Press, Beijing, 2004
Google Scholar