Machelski C.: Steel plate curvatures of soil-steel structure during construction and exploatition. Roads and Bridges - Drogi i Mosty, 15, 3, 2016, 207-220, DOI: 10.7409/rabdim.016.013
Google Scholar
Machelski C., Janusz L., Czerepak A.: Estimation of stress level in the corrugated soil-steel structure based on deformations in the crown. Journal of Traffic and Transportation Engineering, 4, 2016, 186-193, DOI: 10.17265/2328-2142/2016.04.002
Google Scholar
Machelski C., Mumot M.: Corrugated shell displacements during the passage of a vehicle along a soil-steel structure. Studia Geotechnika et Mechanica, 38, 4, 2016, 29-36, DOI: 10.1515/sgem-2016-0028
Google Scholar
Maleska T., Bęben D.: The efect of mine induced tremors on seismic response of soil-steel bridges. 3rd Scientific Conference Environmental Challenges in Civil Engineering (ECCE 2018), Les Ulis, France, MATEC Web of Conferences, 174, 04002, 2018, 1-10, DOI: 10.1051/matecconf/201817404002
Google Scholar
Kovalchuk V., Markul R., Pentsak A., Parneta B., Gajda O., Braichenko S.: Study of the stressstrain state in defective railway reinforcedconcrete pipes restored with corrugated metal structures. Eastern-European Journal of Enterprise Technologies, 89, 5/1, 2017, 37-44, DOI: 10.15587/1729-4061.2017.109611
Google Scholar
Sobotka M., Machelski C.: Hysteretic live load effect in soil-steel structure. Engineering Transactions, 64, 4, 2016, 493-499
Google Scholar
Kovalchuk V., Kovalchuk Y., Sysyn M., Stankevych V., Petrenko O.: Estimation of carrying capacity of metallic corrugated structures of the type multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 91, 1/1, 2018, 18-26, DOI: 10.15587/1729-4061.2018.123002
Google Scholar
Machelski C., Korusiewicz L.: Deformation of buried corrugated metal box structure under railway load. Roads and Bridges - Drogi i Mosty, 16, 3, 2017, 191-201, DOI: 10.7409/rabdim.017.013
Google Scholar
Machelski C., Janusz L., Tomala P., Wiliams K.: Application of results of test in developing 2D model for soilsteel railway bridges. Conference Transportation Research Board of National Academies, Washington D.C., 12-15 January 2018, Paper 19-05399
Google Scholar
Machelski C.: Stiffness of layered shells in soil-steel bridge structures. Roads and Bridges - Drogi i Mosty, 10, 4, 2011, 55-78
Google Scholar
Kunecki B., Korusiewicz L.: Field tests of large-span metal arch culvert during backfilling. Roads and Bridges - Drogi i Mosty, 12, 3, 2013, 283-295, DOI: 10.7409/rabdim.013.020
Google Scholar
Mistewicz M.: Risk assessment of the use of corrugated metal sheets for construction of road soil-shell structures. Roads and Bridges-Drogi i Mosty, 18, 2, 2019, 89-107, DOI: 10.7409/rabdim.019.006
Google Scholar
Bęben D.: Experimental Testing of Soil-Steel Railway Bridge Under Normal Train Loads.In: Experimental Vibration Analysis for Civil Structures. Lecture Notes in Civil Engineering, 5, 2018, 805-815, DOI: 10.1007/978-3-319-67443-8_71
Google Scholar
Maleska T., Bęben D.: Behaviour of corrugated steel plate bridge with high soil cover under seismic excitation. The 3rd Scientific Conference of Environmental Challenges in Civil Engineering (ECCE 2018), Les Ulis, France, MATEC Web of Conferences, 174, 04003, 2018, 1-11, DOI: 10.1051/matecconf/201817404003
Google Scholar
Korusiewicz L., Kunecki B.: Behaviour of the steel box-type culvert during backfilling. Archives of civil and mechanical engineering, Vol. XI, No. 3, 2011, 638-650
Google Scholar
Mak A.C., Brachman R.W.I., Moore I.D.: Measured response of a deeply corrugated box culvert to three dimensional surface loads. Transportation Research Board Annual Conference, Washington D.C., Paper 09-3016, 2009, 14 p.
Google Scholar
Bęben D.: Numerical analysis of a soil-steel bridge structure. Baltic Journal of Road and Bridge Engeineering, 4, 1, 2009, 13-21, DOI: 10.3846/1822-427X.2009.4.13-21
Google Scholar
Luchko Y.Y., Kovalchuk V.V.: Vymiriuvannia napruzheno-deformovanoho stanu konstruktsii mostiv pry zminnykh temperaturakh i navantazhenniakh. Monohrafiia, Kameniar, Lviv, 2012, 235 p. (in Ukraine)
Google Scholar
Prakash Rao D.S.: Temperature Distribution and Stresses in Concrete Bridges. American Concrete Institute, ACI Journal, Vol. 83, 4, 1986, 588-596
Google Scholar
Gera B., Kovalchuk V.: A study of the effects of climatic temperature changes on the corrugated structure of a culvert of a transportation facility. Eastern-European Journal of Enterprise Technologies, 99, 3/7, 2019, 26-35, DOI: 10.15587/1729-4061.2019.168260
Google Scholar
Hakenjos V., Richter K., Gerber A., Wiedermeyer J.: Untersuchung der Bewegungen von Brűckenbemwerken infolge Temperatur und Verkehrsbelastung am Beispiel einer Stahlbrűcke. Stanbaukrupp Industrietechnik GmbH, Vol. 54, 2, 1985, 55-59
Google Scholar
Hoffman P.C., Meclur R.M., West H.H.: Temperature Problem in a Prestressed Box-Girder Bridge. Transportation Research Record, 982, 1984, 42-50
Google Scholar
Luchko Y.Y, Hnativ Yu M., Kovalchuk V.V.: Doslidzhennia temperaturnoho polia ta napruzhenoho stanu prohonovoi budovy stalezalizobetonnoho mosta. Visnyk ternopilskoho natsionalnoho tekhnichnoho universytetu, 52, 2, 2013, 29-38
Google Scholar
Kuryłowicz-Cudowska A.: Determination of Thermo- physical Parameters Involved in The Numerical Model to Predict the Temperature Field of Cast-In-Place Concrete Bridge Deck. Materials, 12, paper 3089, 2019, 1-30, DOI: 10.3390/ma12193089
Google Scholar
Karpiuk V., Syomina Y.A., Antonova D.V.: Bearing Capacity of Common and Damaged CFRP-Strengthened R. C. Beams Subject to High-Level Low-Cycle Loading. Materials Science Forum: Actual Problems of Engineering Mechanics, Vol. 968, 2019, 185-199, DOI: 10.4028/www.scientific.net/MSF.968.185.
Google Scholar
Karpiuk V., Syomina Y.A., Antonova D.V.: Calculation Models of the Bearing Capacity of Span Reinforced Concrete Structures Support Zones. Materials Science Forum: Actual Problems of Engineering Mechanics, Vol. 968, 2019, 209-226, DOI: 10.4028/www.scientific.net/MSF.968.209
Google Scholar
Ahaieva O., Karpiuk V., Posternak O.: Simulation of Design Reliability and Bearing Capacity of Normal and Oblique Sections of Span Prestressed Reinforced Concrete Structures. Materials Science Forum: Actual Problems of Engineering Mechanics, Vol. 968, 2019, 267-280. DOI: 10.4028/www.scientific.net/MSF.968.267
Google Scholar
Podstrigach Ya.S., Lomakin V.A., Kolyano Yu.M.: Termouprugost tel neodnorodnoy strukturyi. Nauka, 1984, 368 p. (in Russian)
Google Scholar