Nr 1

JERZY ODOROWICZ¹⁾

STATECZNOŚĆ STALOWYCH PRĘTÓW PRYZMATYCZNYCH W ZAKRESIE ODKSZTAŁCEŃ PLASTYCZNYCH²⁾

STRESZCZENIE. Praca zawiera analizę stateczności ściskanych prętów pryzmatycznych o przekroju kołowym pełnym, w zakresie odkształceń plastycznych, gdy rozważane są smukłości prętów $\lambda \le \lambda_H$, gdzie $\lambda_H = \pi \sqrt{E/R_H}$, a R_H jest granicą proporcjonalności materiału.

Przedstawiono opis badań eksperymentalnych przeprowadzonych przez Z. Wasiutyńskiego oraz badań własnych i na ich podstawie przeprowadzono analizę wyników tych badań, co umożliwiło wyprowadzenie zaproponowanych przez autora wzorów określających parametry statyczne i geometryczne pręta materialnego oraz wartości energii i pracy sił zewnętrznych stanu ekstremalnego, ściskanego osiowo pręta. Analizę uzupełniano obliczeniami współczynników pewności konstrukcji, które – wg zaproponowanej w pracy teorii – mają wartości mniejsze niż te wynikające z normy PN-90/B-03200, dotyczącej obliczeń statycznych i projektowania konstrukcji stalowych, a zwłaszcza mostów drogowych i kolejowych.

W miarę zmniejszania się smukłości ściskanych prętów stwierdzono – w wyniku badań –, że bardzo szybko wzrasta ich praca ściskania L_{sc} przy jednoczesnym zmniejszaniu się pracy zginania L_{zg} . Stwierdzono również, że oś działania ekstremalnych sił niszczących P_n pozostaje wewnątrz rdzenia przekroju poprzecznego pręta, a to wskazuje, że bardzo krępe pręty – mogące przenosić osiowe naprężenia ściskające zbliżone do granicy plastyczności R_e – podlegają nieznacznemu wyboczeniu.

2006

¹} mgr inż. – emerytowany projektant konstrukcji

²⁾ praca poświęcona pamięci prof. Zbigniewa Brzoski – twórcy polskiej szkoły konstrukcji lotniczych Politechniki Warszawskiej

1. WSTĘP

Przedmiotem pracy jest analiza wyboczeniowa osiowo ściskanych, prostych i krępych prętów pryzmatycznych. Zakres pracy obejmuje pręty o smukłościach $\lambda < \lambda_H$, gdzie $\lambda_H = \pi \sqrt{E / R_H}$, a R_H oznacza granicę proporcjonalności w próbie rozciągania materiału, natomiast *E* oznacza moduł Younga. Przedstawiono oryginalny model wyboczenia prętów stalowych, który został potwierdzony wynikami badań eksperymentalnych przeprowadzonych przez autora oraz rezultatami badań dostępnymi w literaturze.

W pracy [1] wykazano, że w zakresie odkształceń sprężysto-plastycznych ściskane osiowo pręty o smukłościach $\lambda_H \leq \lambda \leq \lambda_r$ są niszczone siłami $P_n < P_E$, przy czym P_E oznacza eulerowską siłę krytyczną. Smukłość λ_r , rozdzielająca zakres ugięć sprężystych od zakresu ugięć sprężysto-plastycznych, jest zależna od granicy proporcjonalności R_H i od kształtu przekroju poprzecznego pręta.

Na podstawie badań opublikowanych w [2] stwierdzono, że tylko przy dużych smukłościach $\lambda > \lambda_r$ ściskane pręty przenoszą eulerowskie siły krytyczne P_E przy sprężystej, statecznej wyboczonej postaci. W prętach o smukłości $\lambda < \lambda_r$, przy ich ściskaniu, występują trwałe odkształcenia $\Delta \varepsilon_{\mu\nu}$ (w całej objętości pręta), w wyniku czego moduł wyboczeniowy E_w staje się mniejszy od modułu Young'a E i to zjawisko wpływa na wystąpienie ekstremalnych sił niszczących $P_n < P_E$, przy których wybaczany pręt stalowy osiąga wartość maksymalnej energii sprężystej $U_H = \sqrt{R_H^3 / E \cdot \pi \cdot Ai / 2}$, nazwanej

energią adekwatną. Przyjęto tu oznaczenia: A – pole powierzchni przekroju poprzecznego, i – promień bezwładności przekroju.

Przy smukłościach $\lambda < \lambda_{\rm H}$ w chwili wystąpienia ekstremalnych sił niszczących P_n – pręty materialne osiągają adekwatną energię $U_E < U_H$, wynikającą również z hiperboli Eulera, co stwierdzono przeprowadzonymi badaniami ściskanych prętów o przekrojach kołowym i kwadratowym, wykonanych ze stali 18G2A i St4SX, używanych na nośne konstrukcje inżynierskie, jak np. mostów drogowych i kolejowych oraz suwnic.

Aby omówić zjawiska fizyczne związane ze ściskaniem stalowych prostych prętów pryzmatycznych, przedstawiono poniżej niezbędne wzory wyprowadzone w pracach [1 - 4].

Podstawowa zależność wynikająca z równania równowagi jest następująca:

$$k^{2} = \frac{P_{n}}{E_{w}J} = \frac{\pi^{2}}{l^{2}} = \frac{4\sin^{2}(\alpha_{n}/2)}{f_{n}^{2}} , \qquad (1.1)$$

skąd krzywizna w połowie długości wyboczonego pręta

$$\frac{1}{\rho_n} = \frac{\pi^2 f_n}{l^2} = \frac{4\sin^2(\alpha_n/2)}{f_n} = \frac{P_n f_n}{E_w J} , \qquad (1.2)$$

gdzie:

- P_n siła niszcząca, J moment bezwładności przekroju, l długość pręta,
- f_n^n ugięcie pręta w połowie długości, α_n kąt obrotu końca pręta,

 ρ_n – promień krzywizny.

Krytyczne odkształcenie osi wyboczonego pręta określa wzór:

$$\varepsilon_{k} = \pi^{2} / \lambda^{2} = \sigma_{n} / E_{w} = (Z_{on} / \rho_{n})_{l/2} .$$
 (1.3)

Iloczyn przemieszczeń poprzecznych w połowie długości wyboczonego pręta:

$$(Z_{on} \cdot f_n)_{l/2} = i^2 , \qquad (1.4)$$

gdzie:

 Z_{ov} – współrzędna położenia osi obojętnej.

Na podstawie (1.3) otrzymuje się wzory na krytyczne skrócenie osi pręta:

$$\Delta l_{k} = \varepsilon_{k} l = \pi^{2} i^{2} / l = \pi^{2} i / \lambda , \qquad (1.5)$$

które występuje w ściskanym pręcie już przy sile $P \approx P_F / \sqrt{3}$.

Przy czystym ściskaniu pręta występuje adekwatny moduł

$$E_{sc}^{\bullet} = \frac{P \cdot l}{\Delta l \cdot A} , \qquad (1.6)$$

natomiast adekwatny moduł wyboczeniowy występujący przy pojawianiu się ugięć ściskanego pręta

$$E_w^{\bullet} = \frac{P \cdot l^2}{\pi^2 J} \quad . \tag{1.7}$$

Okazuje się, że $E_{sc}^{\bullet} = E_{w}^{\bullet}$ tylko przy obciążeniu $P \approx P_{E}\sqrt{3}$.

Maksymalną energię sprężystą układu materialnego określa:

• bilans energii zginania i ściskania pręta, zapisany w postaci

$$2\frac{(P_n f_n)^2 \beta \cdot l}{4EJ \cos(\alpha_n / 4)} + \frac{P_n^2 l \sqrt{\beta}}{2EA} = \sqrt{R_H^2 / E} \cdot \pi A i / 2 , \qquad (1.8)$$

gdzie β oznacza iloraz sił P_k i P_n ($\beta = P_k / P_n$), albo

• bilans prac sił zewnętrznych

$$2P_n \left(\frac{\pi a_n}{2}\right)^2 \frac{l}{\cos(\alpha_n / 4)} + \frac{P_n \cdot \pi^2 i^2}{2l\sqrt{\beta}} = R_H A \frac{\pi^2 i^2}{2l_n} .$$
(1.9)

Względne ugięcie niszczące określa wzór:

$$a_n = \frac{f_n}{l} = \sqrt{\beta \frac{\lambda}{\lambda_H^3} - \frac{1}{\lambda^2 \sqrt{\beta}}} \quad . \tag{1.10}$$

Iloraz sił zapisuje się w następującej postaci:

$$\beta = E / E_w = (\lambda_r / \lambda)^{\zeta} \quad . \tag{1.11}$$

gdzie wykładnik

$$\zeta = \ln \beta_H / \ln X_r \quad . \tag{1.12}$$

Współczynnik $\beta_H = P_H / P_{n2} = E / E_{w2} = \beta_2$ wyznacza się z zależności:

$$\beta_{H} - 1/\sqrt{\beta_{H}} = 1/X_{r}^{2} - 1/X_{r}^{4} , \qquad (1.13)$$

gdzie $X_r = \lambda_r / \lambda_H$ wyznacza się ze wzoru:

$$\sqrt{X_r - 1/X_r^2} = \frac{W}{A \cdot i} (X_r - 1/X_r) .$$
 (1.14)

Trwałe odkształcenia określono następująco:

$$\Delta \varepsilon_{trw} = \frac{\sigma_n}{E_w} (1 - 1/\beta) = \varepsilon_k (1 - 1/\beta) . \qquad (1.15)$$

Iloraz przemieszczeń wyznacza się w postaci:

$$B_{n} = \frac{f_{n}}{\Delta l_{zg_{n}}} = \frac{2}{\pi} \frac{\cos(\alpha_{n} / 4)}{[1 + \cos^{2}(\alpha_{n} / 4)]\sin(\alpha_{n} / 4)} .$$
(1.16)

Kąt obrotu końców określa wzór:

$$\alpha_n = 2\arcsin(\pi \cdot f_n / 2l) , \qquad (1.17)$$

a niszczący moment zginający:

$$M_{zg} = \sigma_{zg} \cdot W = \frac{4EJ}{\beta \cdot l} \frac{\cos(\alpha_n / 4)}{B_n} .$$
 (1.18)

2. ZALEŻNOŚCI PODSTAWOWE W ZAKRESIE ODKSZTAŁCEŃ PLASTYCZNYCH

2.1. OKREŚLENIE NAPRĘŻEŃ NISZCZĄCYCH

Na rys. 2.1 przedstawiono schematycznie wykresy hiperboli Eulera, krzywej Karmana, hiperboli β oraz krzywej rzeczywistych naprężeń niszczących σ_n . Charakterystyczne punkty wykresu oznaczono cyframi od 1 do 7.

Rys.2.1. Schematyczny wykres naprężeń niszczących σ_n przy $\lambda < \lambda_r$ Fig.2.1. Failure stresses σ_n versus slenderness ratio plotted for $\lambda < \lambda_r$

W zakresie odkształceń sprężystych (A) przy $\lambda \ge \lambda_r$ występują eulerowskie naprężenia $\sigma_k = \sigma_E = \pi^2 E / \lambda^2$, potwierdzone badaniami [2 i 3]. W zakresie odkształceń sprężysto-plastycznych (B) przy smukłości $\lambda_r \le \lambda \le \lambda_H$ występują ekstremalne naprężenia niszczące $\sigma_n = \pi^2 E_w / \lambda^2$, wg pracy [1]. Krzywa naprężeń niszczących $\sigma_n = \pi^2 E_{wn} / \lambda_n^2$ w zakresie odkształceń plastycznych (C) przebiega przez punkty 2-4-7, poniżej krzywej Karmana [5].

Z granicą proporcjonalności R_{H} są związane punkty 1, 2, 3 i 4, a z granicą plastyczności R_{e} – punkty 5, 6 i 7. W p. 5 na hiperboli Eulera wystąpią; siła P_{E5} , naprężenie σ_{E5} , energia U_{E5} , długość pręta l_{5} , smukłość λ_{5} itd. Powyżej p. 2 hiperbola β staje się hiperbolą β^{*} i wszystkie wartości z nią związane oznaczane są kropkami (np. w p. 3 wystąpią $\beta_{3}^{*}, \lambda_{3}^{*}$, ugięcie f_{3}^{*} , energia U_{3}^{*} , moduł wyboczeniowy E_{w3}^{*} itd.).

Wszystkie wartości związane z krzywą naprężeń niszczących σ_n są wyróżnione indeksem "n" z cyfrą (np. w p. 4 wystąpią oznaczenia $\lambda_{n4}, \sigma_{n4}, P_{n4}, f_{n4}, U_{n4}$, moduł wyboczeniowo-sieczny E_{wn4} itd.).

W pracy [1] w odniesieniu do przekroju kołowego pełnego wyznaczono wg wzoru (1.13) współczynnik $\beta_H = \beta_2 = 1,1552$, co umożliwia zapisanie wzoru na niszczące naprężenia w p. 2

$$\sigma_{n2} = \frac{\pi^2 E_{w2}}{\lambda_H^2} = \frac{\pi^2 E}{\lambda_H^2 \beta_2} , \qquad (2.1)$$

a w osi pręta wystąpi odkształcenie trwałe wg (1.15). Przy smukłości $\lambda < \lambda_H$ linia naprężeń σ_n odchodzi od linii hiperboli β^{\bullet} i wynika to ze wzrastającej adekwatnej energii układu. Naprężenie normalne $R_H = \sigma_{n4}$ może wystąpić tylko w pręcie rzeczywistym o smukłości λ_{n4} , a teoretycznie w pręcie fikcyjnym o smukłości λ_3^{\bullet} i pręcie o smukłości λ_H , w p. 1 hiperboli Eulera.

Zapiszmy więc, że

$$\frac{\pi^2 E}{\lambda_3^{\bullet 2} \beta_3^{\bullet}} = \frac{\pi^2 E}{\lambda_H^2} , \qquad (2.2)$$

skąd otrzymujemy

$$\lambda_3^{\bullet 2}\beta_3^{\bullet} = \lambda_H^2 \quad . \tag{2.3}$$

Na podstawie (1.11) można zapisać:

$$\beta_3^{\bullet} = (\lambda_r / \lambda_3^{\bullet})^{\zeta} , \qquad (2.4)$$

a z (2.3) oraz z (2.4) otrzymuje się:

$$\lambda_{3}^{\bullet(2-\zeta)}\lambda_{r}^{\zeta} = \lambda_{H}^{2}$$
(2.5)

i stąd wyznacza się:

$$\lambda_{3}^{\bullet} = \left(\lambda_{H}^{2} / \lambda_{r}^{\zeta}\right)^{1/(2-\zeta)}, \qquad (2.6)$$

natomiast na podstawie (2.3) można zapisać:

$$\lambda_{3}^{\bullet} = \lambda_{H} / \sqrt{\beta_{3}^{\bullet}} . \qquad (2.7)$$

Na linii naprężeń niszczących między punktami 2 ÷4 przy naprężeniach $\sigma_{n(i)}$ równych naprężeniom $\sigma_{\beta^{\bullet}(i)}$, występujących na hiperboli β^{\bullet} , wzór na moduł wyboczeniowy ma postać następującą:

$$E_{wni} = E_{wi}^{\bullet} \frac{\lambda_i^{\bullet}}{\lambda_H} = \frac{E}{\beta_i^{\bullet}} \frac{\lambda_i^{\bullet}}{\lambda_H} .$$
(2.8)

Przy $\lambda_3^{\bullet} / \lambda_H = 1 / \sqrt{\beta_3^{\bullet}}$ otrzymuje się moduł wyboczeniowy w p. 4:

$$E_{wn4} = E_{w3}^{\bullet} \frac{\lambda_{3}^{\bullet}}{\lambda_{H}} = \frac{E}{\beta_{3}^{\bullet}} \frac{1}{\sqrt{\beta_{3}^{\bullet}}} = \frac{E}{\beta_{3}^{\bullet 1,5}} .$$
(2.9)

W związku z tym

$$\frac{\pi^2 E_{wn4}}{\lambda_{n4}^2} = \frac{\pi^2 E}{\lambda_{n4}^2 \beta_3^{\bullet 1,5}} = \frac{\pi^2 E_{w3}^{\bullet}}{\lambda_3^{\bullet 2}} = \frac{\pi^2 E}{\lambda_H^2} , \qquad (2.10)$$

stąd wynika, że

$$\lambda_{_{n4}} = \lambda_{_H} \ / \beta_3^{\bullet 0,75} \ , \tag{2.11}$$

a między punktami 2 i 4 dowolna smukłość pręta stalowego wynika z zależności:

$$\lambda_{ni} = \sqrt{\lambda_i^{\bullet 3} / \lambda_H} \quad . \tag{2.12}$$

Moduł wyboczeniowo-sieczny w punkcie 4 możemy określić z zależności:

$$E_{wn4} = \frac{R_H E_{w3}^{\bullet}}{\Delta \varepsilon_{trw(3-4)} E_{w3}^{\bullet} + R_H} = E / \beta_3^{\bullet 1,5} , \qquad (2.13)$$

albo

$$E_{wn4} = \frac{R_H E}{\Delta \varepsilon_{trw(1-4)} E + R_H} = E / \beta_3^{\bullet 1,5} , \qquad (2.14)$$

stąd

$$\Delta \varepsilon_{_{HW4}} = R_H \left(\frac{1}{E_{_{WR4}}} - \frac{1}{E}\right) = \frac{R_H}{E} (\beta_3^{\bullet 1,5} - 1) \quad . \tag{2.15}$$

Odkształcenia trwałe (2.15) występują w osi pręta, natomiast po stronie wklęsłej w połowie jego długości będą odpowiednio większe. Odkształcenia trwałe określa wzór ogólny

$$\Delta \varepsilon_{_{ITWi}} = \sigma_i \left(\frac{1}{E_{_{WNi}}} - \frac{1}{E}\right) . \qquad (2.16)$$

Moduły wyboczeniowo-osiowe $E_{_{wn}}$ występują w całej objętości materiału wyboczonego pręta o smukłości $\lambda\!<\!\lambda_{_H}$.

Możemy zapisać wzór ogólny na niszczące naprężenia w zakresie odkształceń plastycznych:

$$\sigma_n = \pi^2 E_{wn} / \lambda_n^2 \quad . \tag{2.17}$$

Przykład obliczeniowy

Rozważmy pręty wykonane ze stali D50, wykazujące granicę plastyczności $R_e = 402$ MPa, granicę proporcjonalności $R_H = 317,62$ MPa przy module E = 210100 MPa, gdy $\lambda_H = \pi \sqrt{E/R_H} = 80,8$. Pręty stalowe o średnicy d = 0,1 cm badane w zakresie odkształceń sprężysto-plastycznych opisano w pracy [1]. W odniesieniu do przekroju kołowego pełnego smukłość rozdzielająca wynosi $\lambda_r = 4,3961 \cdot \lambda_H = 355,2$. Z tablicy 4.1 wykładnik potęgi wynosi $\zeta \phi = 1/10,2632$ i z (2.6) otrzymujemy smukłość fikcyjną $\lambda_3^* = 74,8993$, a z zależności (2.4) $\beta_3^* = 1,16377$.

Na podstawie wzoru (1.11) otrzymuje się $E_{w3}^{\bullet} = E / \beta_3^{\bullet}$.

Przy $\lambda_{H} = 80.8 \text{ i } \beta_{3}^{\bullet} = 1,1638 \text{ otrzymujemy z } (2.11) \text{ smukłość}$

$$\lambda_{n4} = 72,1127$$

Obliczmy odkształcenie trwałe między puktami 3-4

$$\Delta \varepsilon_{_{HW}(3-4)} = \frac{\pi^2}{\lambda_{_{n4}}^2} - \frac{\pi^2}{\lambda_{_3}^{\bullet 2}} = \frac{\pi^2}{\lambda_{_H}^2} (\beta_3^{\bullet 1,5} - \beta_3^{\bullet}) = 1,38618 \cdot 10^{-4} ,$$

natomiast całkowite odkształcenie trwałe między punktami 1 ÷ 4 wynosi

$$\Delta \varepsilon_{_{H^{W}(1-4)}} = \frac{\pi^2}{\lambda_{_{n4}}^2} - \frac{\pi^2}{\lambda_{_{H}}^2} = \frac{\pi^2}{\lambda_{_{H}}^2} (\beta_3^{\bullet 1,5} - 1) = 3,8625 \cdot 10^{-4} .$$

W tablicy 4.1 podano wartości współczynników β_3^{\bullet} i wartości $\Delta \varepsilon_{trw4}$ dla 4-ech różnych przekrojów:

1. w rozpatrywanym przekroju kołowym pełnym wystąpi	$E_{ym4} = 167343 \text{ MPa},$
2. w przekroju kwadratowym pełnym	$E_{wn4}^{max} = 157500 \text{ MPa},$
3. w rurze kwadratowej przy grubości ścianki $g = 0.05H$	$E_{wn4} = 153300 \text{ MPa},$
4. w rurze okrągłej przy grubości ścianki $g = 0.05D$	$E_{wn4}^{m} = 163470 \mathrm{MPa}.$

Z dokonanego porównania wynika, że w prętach cienkościennych o adekwatnych smukłościach λ_{n4} występuje większe wytężenie materiału przy osiowym naprężeniu $\sigma_{n4} = R_H$.

Podstawiając wyznaczone wartości λ_3^{\bullet} i E_{w3} , λ_{n4} i E_{wn4} otrzymuje się:

$$\sigma_{3}^{\bullet} = \frac{\pi^{2} E_{w3}^{\bullet}}{\lambda_{3}^{\bullet 2}} = 317,62 \text{ MPa} = R_{H}$$
,

oraz

$$\sigma_{n4} = \frac{\pi^2 E_{wn4}}{\lambda_{n4}^2} = 317,62 \text{ MPa} = R_H$$
.

Powyższe wyniki potwierdzają, że potrafimy wyznaczyć adekwatne moduły E_{w3}^{\bullet} i E_{wn4} oraz smukłość fikcyjną λ_3^{\bullet} i rzeczywistą λ_{n4} . Uogólniając możemy stwierdzić, że udało się wyznaczyć naprężenia niszczące σ_n na odcinku linii między punktami 2÷4, wyróżnionymi na wykresie rys. 2.1.

2.2. ADEKWATNA ENERGIA UKŁADU MATERIALNEGO, PRZY OSIOWYM NAPRĘŻENIU $\sigma_{n4} = R_{H}$

Względne ugięcie pręta fikcyjnego określa następujący wzór na podstawie (1.10):

$$a_{i}^{\bullet} = \frac{f_{i}^{\bullet}}{l_{i}^{\bullet}} = \frac{\sqrt{\beta_{i}^{\bullet}}}{\lambda_{H}} \sqrt{\beta_{i}^{\bullet} - 1/\sqrt{\beta_{\iota}^{\bullet}}} = \frac{1}{\lambda_{i}^{\bullet}} \sqrt{\beta_{i}^{\bullet} - 1/\sqrt{\beta_{i}^{\bullet}}} , \qquad (2.18)$$

a ugięcie zaś okresla wzór:

$$f_i^{\bullet} = i\sqrt{\beta_i^{\bullet} - 1/\sqrt{\beta_i^{\bullet}}} \quad . \tag{2.19}$$

Zważywszy, że

$$L_{E3} = (\lambda_H / \lambda_3^{\bullet})^3 U_H = (\lambda_H / \lambda_3^{\bullet})^3 \sqrt{R_H^3} / E \pi \cdot Ai / 2$$
(2.20)

zapisujemy bilans prac w odniesieniu do prętów fikcyjnych przy $\sigma_3^{\bullet} = R_{_{H}}$

$$2L_{zg3}^{\bullet} + L_{sc3}^{\bullet} = L_{E3} = (\lambda_{H} / \lambda_{3}^{\bullet})^{3} U_{H} , \qquad (2.21)$$

a przy większych smukłościach $\lambda_3^{\bullet} \leq \lambda_i^{\bullet} \leq \lambda_H$, między punktami 2 i 3 będzie

$$2L_{sgi}^{\bullet} + L_{sci}^{\bullet} = L_{Ei} = (\lambda_H / \lambda_i^{\bullet})^3 U_H . \qquad (2.22)$$

Po podstawieniu do (2.21) wyrażeń na $L_{z\sigma_3}^{\bullet}$ i $L_{s\sigma_3}^{\bullet}$ otrzymuje się:

$$2P_{3}^{\bullet} \frac{\pi^{2} f_{3}^{\bullet 2}}{4l_{3}^{\bullet}} + P_{3}^{\bullet} \frac{\pi^{2} i^{2}}{2l_{3}^{\bullet} \sqrt{\beta_{3}^{\bullet}}} = P_{E3} \frac{\pi^{2} i^{2}}{2l_{3}^{\bullet}} .$$
(2.23)

W pręcie rzeczywistym o smukłości λ_{n4} i pręcie fikcyjnym o smukłości λ_{3}^{\bullet} wystąpią jednakowe siły $P_{n4} = P_{3}^{\bullet} = P_{H} = R_{H} \cdot A$ i w związku z tym zbliżenia końców prętów od zginania Δl_{zg} muszą być sobie równe. Na podstawie zależności

$$f_{n4}^{2} / l_{n4} = f_{3}^{\bullet 2} / l_{3}^{\bullet} , \qquad (2.24)$$

wykorzystując wzory (2.7) oraz (2.11) otrzymuje się:

$$f_{n4} = f_3^{\bullet} / \beta_3^{\bullet 1/8} . \tag{2.25}$$

Ogólnie przy $\lambda_{ni} < \lambda_i^{\bullet} < \lambda_H$ na podstawie wzoru (2.24) przy wykorzystaniu wzoru (2.19) otrzymuje się zależność:

$$f_{ni} = f_i^{\bullet} \sqrt{\lambda_{ni} / \lambda_i^{\bullet}} = i \sqrt{\beta_i^{\bullet} - 1 / \sqrt{\beta_i^{\bullet}}} \sqrt{\lambda_{ni} / \lambda_i^{\bullet}} , \qquad (2.26)$$

natomiast

$$a_{ni} = \frac{f_{ni}}{l_{ni}} = \sqrt{\beta_i^{\bullet} - 1/\sqrt{\beta_i^{\bullet}}} \frac{1}{\sqrt{\lambda_{ni} \cdot \lambda_i^{\bullet}}}$$
(2.27)

Wykorzystując (2.14) i (2.18) z powyższego wzoru otrzymuje się:

$$a_{n4} = \sqrt{\beta_3^{\bullet} - 1/\sqrt{\beta_3^{\bullet}}} \frac{\beta_3^{\bullet 1/8}}{\lambda_3^{\bullet}} = \sqrt{\beta_3^{\bullet} - 1/\sqrt{\beta_3^{\bullet}}} \frac{\beta_3^{\bullet 5/8}}{\lambda_H} = a_3^{\bullet} \beta_3^{\bullet 1/8} .$$
(2.28)

Aktualna jest zależność

$$\sin \alpha / 2 = \frac{\pi}{2} \frac{f}{l} = \frac{\pi}{2} a$$
 (2.29)

Możemy zatem zapisać bilans prac w odniesieniu do pręta rzeczywistego o długości $l_{n4} < L_3^{\bullet}$, gdy $U_{E3} = L_{E3}$

$$2L_{zgn4} + L_{scn4} = L_{E3} = (\lambda_H / \lambda_3^{\bullet})^3 U_H , \qquad (2.30)$$

a po rozwinięciu wyrazów

$$2P_{n4} \frac{\pi^2 f_{n4}^2}{4l_{n4} \cos(\alpha_{n4} / 4)} + P_{n4} \frac{\pi^2 i^2}{2l_{n4} \sqrt{E / E_{wn4}}} = P_{E3} \frac{\pi^2 i^2}{2l_3^*} .$$
(2.31)

Podobnie zapiszemy bilans energii od sił wewnętrznych

$$2 U_{zgn4} + U_{scn4} = U_{E3} = (\lambda_H / \lambda_3^{\bullet})^3 U_H , \qquad (2.32)$$

po rozwinięciu wyrazów

$$2\frac{(P_{n4}f_{n4})^2 l_{n4}^2}{4E_{wn4}J\cos(\alpha_{n4}/4)} + \frac{P_{n4}^2 l_{n4}\sqrt{E/E_{wn4}}}{2EA} = \frac{P_{E3}^2 l_3^{\bullet}}{2EA} .$$
(2.33)

Przy większych smukłościach $\lambda_{n4} < \lambda_{ni} \le \lambda_H$ bilans pracy według (2.31) przyjmuje postać

$$2\frac{P_{ni}\pi^{2}f_{ni}^{2}}{4l_{ni}\cos(\alpha_{ni}/4)} + P_{ni}\frac{\pi^{2}i^{2}}{2l_{ni}\sqrt{E/E_{wni}}} = P_{Ei}\frac{\pi^{2}i^{2}}{2l_{i}^{\bullet}}$$
(2.34)

i odpowiednio bilans energii

$$2\frac{(P_{ni} \cdot f_{ni})^{2} l_{ni}}{4E_{wni} J \cos(\alpha_{ni} / 4)} + \frac{P_{ni}^{2} l_{ni} \sqrt{E / E_{wni}}}{2EA} = \frac{P_{Ei}^{2} l_{i}^{\bullet}}{2EA}$$
(2.35)

i zawsze będzie

$$L_{Ei} = U_{Ei} = (\lambda_{H} / \lambda_{3}^{\bullet})^{3} U_{H} .$$
 (2.36)

Przykład obliczeniowy

Kontynuując poprzednio przedstawiony przykład dla pręta ze stali D50, przy $\beta_3^{\bullet} = 1,1638 \text{ oraz } i = d / 4 = 0,1 \text{ cm} / 4 \text{ otrzymujemy z } (2.19) f_3^{\bullet} = 0,0122 \text{ cm}, \text{ a z } (2.18) a_3^{\bullet} = 6,4975 \cdot 10^{-3}$. Przy długosci pręta $l_3^{\bullet} = i \cdot \lambda_3^{\bullet} = 1,8725 \text{ cm}$ otrzymamy pracę zginania

$$L_{zg3}^{\bullet} = R_H A \Delta l_{zg3}^{\bullet} = R_H \cdot A \frac{\pi^2 f_3^{\bullet 2}}{4l_3^{\bullet}} = 4,865 \cdot 10^{-4} \,\mathrm{J} ,$$

natomiast praca ściskania tego pręta

$$L_{sc3}^{\bullet} = R_H A \frac{\Delta l_{k3}^{\bullet}}{2} = R_H \cdot A \frac{\pi^2 i^2}{2l_3^{\bullet} \sqrt{\beta_3^{\bullet}}} = 3,809 \cdot 10^{-3} \text{ J}$$

Zauważmy, że $L_{sc3}^{\bullet} = L_{H}^{\bullet}$, ponieważ $l_{3}^{\bullet}\sqrt{\beta_{3}^{\bullet}} = i\lambda_{3}^{\bullet}\sqrt{\beta_{3}^{\bullet}} = i\cdot\lambda_{H}^{\bullet} = l_{H}^{\bullet}$.

Wzorując się na bilansie prac sił zewnętrznych wg wzoru (1.9) otrzymuje się:

$$2L_{zg3}^{\bullet} + L_{sc3}^{\bullet} = 2 \cdot 4,865 \cdot 10^{-4} + 3,809 \cdot 10^{-3} = 4,782 \cdot 10^{-3} \,\mathrm{J} \,.$$

Przy smukłości $\lambda_{_3}^{\bullet}$ z hiperboli Eulera otrzymamy naprężenie i siłę

$$\sigma_{E3} = \pi^2 E / \lambda_3^{\bullet 2} = 369,63 \text{ MPa}$$
, skąd $P_{E3} = \sigma_{E3} \cdot A = 29,03 \text{ daN}$

i w związku z tym przy $l_3 = l_3^{\bullet} = 1,8725$ cm otrzymamy pracę ściskania

$$L_{E3} = P_{E3} \frac{\Delta l_{k3}}{2} = P_{E3} \frac{\pi^2 i^2}{2l_3} = 4,782 \cdot 10^{-3} \,\mathrm{J}$$

której wartość odpowiada wcześniej podanemu bilansowi prac.

Przy $\beta_3^{\bullet} = 1,1638$ i $\lambda_H = 80,8$ otrzymujemy $a_{n4} = 0,006621$, z wzoru (2.29) otrzymujemy kąt $\alpha_{n4} = 1,1918^{\circ}$.

Przy średnicy d = 0,1 cm i $\lambda_{n4} = 72,1127$ otrzymujemy długość pręta

$$l_{n4} = \lambda_{n4} \cdot i = 1,8028 \text{ cm}$$
.

Praca zginania pręta rzeczywistego wynosi zatem

$$L_{zgn4} = \frac{R_H \cdot A\pi^2 f_n^2}{4l_{n4} \cos(\alpha_{n4} / 4)} = \frac{R_H \cdot A\pi^2 a_{n4}^2 \cdot l_{n4}}{4\cos(\alpha_{n4} / 4)} = 4,865 \cdot 10^{-4} \,\mathrm{J} \ .$$

Praca ściskania

$$L_{scn4} = R_H \cdot A \frac{\Delta l_{kn4}}{2} = \frac{R_H A \pi^2 i^2}{2l_{n4} \sqrt{E/E_{wn4}}} = \frac{R_H \cdot A \pi^2 i^2}{2l_{n4} \sqrt{\beta_3^{\bullet 1,5}}} = 3,809 \cdot 10^{-3} \,\mathrm{J} \ .$$

Okazuje się, że $L_{zgn4} = L_{zg3}^{\bullet}$, a praca ściskania $L_{scn4} = L_{sc3}^{\bullet}$. Energia zginania pręta rzeczywistego

$$U_{zgn4} = \frac{(P_{n4}l_{n4})^2 l_{n4}}{4E_{wn4} \cdot \cos(\alpha_{n4}/4)} = 4,865 \cdot 10^{-4} \,\mathrm{J},$$

a energia ściskania

$$U_{scn4} = \frac{P_{n4}^2 l_{n4} \sqrt{E / E_{wn4}}}{2EA} = \frac{P_{n4}^2 l_{n4} \beta_3^{\bullet 0,75}}{2EA} 3,809 \cdot 10^{-3} \,\mathrm{J} \,.$$

Energia ściskania pręta o długości l_3^{\bullet} wynikająca z hiperboli Eulera

$$U_{E3} = \frac{P_{E3}^2 l_3}{2EA} = \frac{29,031^2 \cdot 1,8725}{2 \cdot 210100 \cdot 0,00785} = 4,782 \cdot 10^{-3} \text{ J} .$$

2.3. SPRAWDZENIE WYPROWADZONYCH ZALEŻNOŚCI

Przed przystąpieniem do rozważań nad stanem układu materialnego przy granicy plastyczności R_e – sprawdźmy wyprowadzone zależności dotyczące granicy sprężystości R_H , wyznaczanej punktach 1, 3 i 4 na wykresie (rys. 2.1).

Przy $\alpha_{n4} = 1,19180^{\circ}$, $a_{n4} = 0,006621$ i $l_{n4} = 1,8028$ cm otrzymuje się ugięcie

$$f_{n4} = a_{n4} \cdot l_{n4} = 0,0119 \,\mathrm{cm}.$$

Ze wzoru (1.1) otrzymuje się:

$$\frac{\pi^2}{l_{n4}^2} = \frac{4\sin^2(\alpha_{n4}/2)}{f_{n4}^2} = 3,036652\frac{1}{\text{cm}^2}$$

Ze wzoru (1.2) wynika, że

$$\frac{1}{\rho_{n4}} = \frac{\pi^2 f_{n4}}{l_{n4}^2} = \frac{1}{27,5875} \frac{1}{\text{cm}}$$

Ze wzoru (1.4) otrzymuje się

$$Z_{on4} = 0,0524 \,\mathrm{cm}$$
.

Ze wzoru (1.3) jest

$$\varepsilon_{k} = Z_{on4} / \rho_{n4} = 0,00190 ,$$

$$\varepsilon_{k} = \pi^{2} / \lambda_{n4}^{2} = \pi^{2} / 72,111^{2} = 0,00190 ,$$

$$\varepsilon_{k} = \sigma_{n4} / E_{wn4} = 317,62 / 167343 = 0,00190$$

Ze wzoru (1.16) wynika iloraz przemieszczeń $B_{n4} = 61,21126$, a ze wzoru (2.9) przy

$$K_{n4} = E / E_{wn4} = \beta_3^{\bullet 1.5} = 1,25545$$

otrzymuje się ze wzoru (1.18)

$$Mg_{m4} = \frac{4EJ}{\beta_3^{\bullet 1,5} l_{n4}} \cdot \frac{\cos(\alpha_{n4} / 4)}{B_{n4}} = 0,029776 \text{ Nm},$$

gdy

$$Mg_{n4} = P_{n4} \cdot f_{n4} = 0,029776$$
 Nm

oraz gdy

$$Mg_{n4} = E_{wn4}J / \rho_{n4} = 0,029776$$
 Nm .

W przytoczonych rozważaniach Z_{on4} jest współrzędną położenia osi obojętnej w połowie długości wyboczonego pręta. Powyższe wyniki wskazują na prawidłowość rozważań przedstawionych w rozdziale 2.2.

3. ADEKWATNA ENERGIA UKŁADU MATERIALNEGO PRZY NAPRĘŻENIU NORMALNYM $\sigma_{n7} = R_{e}$

Z wykresu na rys. 2.1 wynika, że przy granicy plastyczności wystąpi równość zależności

$$\frac{\pi^2 E_{wn7}}{\lambda_{n7}^2} = \frac{\pi^2 E}{\lambda_6^{\bullet 2} \beta_6^{\bullet}} = \frac{\pi^2 E}{\lambda_5^2} = R_e , \qquad (3.1)$$

skąd

$$\lambda_6^{\bullet 2} \cdot \beta_6^{\bullet} = \lambda_5^2 , \qquad (3.2)$$

a ponieważ

$$\beta_6^{\bullet} = (\lambda_r / \lambda_6^{\bullet})^{\zeta} , \qquad (3.3)$$

więc z (3.2) będzie

$$\lambda_r^{\zeta} \cdot \lambda_6^{\bullet(2-\zeta)} = \lambda_5^2 . \tag{3.4}$$

Możemy zatem wyznaczyć smukłość fikcyjną

$$\lambda_{6}^{\bullet} = \left(\frac{\lambda_{5}^{2}}{\lambda_{r}^{\zeta}}\right)^{1/(2-\zeta)} = \left(\frac{\pi^{2}E}{R_{e}\cdot\lambda_{r}^{\zeta}}\right)^{1/(2-\zeta)} .$$
(3.5)

Przy normalnych naprężeniach $R_H \leq \sigma_{ni} \leq R_e$, gdy $\lambda_6^{\bullet} \leq \lambda_i^{\bullet} \leq \lambda_3^{\bullet}$ oraz gdy, $\lambda_5 \leq \lambda_{Ei}^{\bullet} \leq \lambda_H$ otrzymujemy wzór ogólny

$$\lambda_{i}^{\bullet} = \left(\frac{\lambda_{Ei}^{2}}{\lambda_{r}^{\zeta}}\right)^{1/(2-\zeta)} = \left(\frac{\pi^{2}E}{\sigma_{ni}\cdot\lambda_{r}^{\zeta}}\right)^{1/(2-\zeta)} .$$
(3.6)

Moduł wyboczeniowy związany z hiperbolą 6° osiągnie w p. 6 wartość

$$E_{w6}^{\bullet} = \frac{1}{1 / E + \Delta \varepsilon_{trw6}^{\bullet} / R_{e}} = \frac{E}{\beta_{6}^{\bullet}}, \qquad (3.7)$$

a przy $\beta_6^{\bullet} \ge \beta_i^{\bullet} \ge \beta_3^{\bullet}$ oraz gdy $\lambda_6^{\bullet} \le \lambda_i^{\bullet} \le \lambda_3^{\bullet}$ będzie ogólnie

$$E_{wi}^{\bullet} = \frac{1}{1/E + \Delta \varepsilon_{trwi}^{\bullet} / \sigma_{i}^{\bullet}} = \frac{E}{\beta_{i}^{\bullet}} , \qquad (3.8)$$

gdzie przy $\lambda_5 \leq \lambda_i \leq \lambda_H$

$$\Delta \varepsilon_{\mu\nui}^{\bullet} = \frac{\pi^2}{\lambda_i^{\bullet 2}} - \frac{\pi^2}{\lambda_i^2} . \tag{3.9}$$

Zapisujemy bilans prac

$$P_{n7}(2\Delta l_{zgn7}\Delta l_{scn7}) = L_{E6} .$$
(3.10)

Określając moduł

$$E_{wn7} = \lambda_{n7}^2 R_e / \pi^2$$
 (3.11)

uproszczamy iloraz

$$\frac{E}{E_{wn7}} = \frac{E\pi^2}{\lambda_{n7}^2 R_e} = \frac{\lambda_5^2}{\lambda_{n7}^2} .$$
(3.12)

Na podstawie (2.27) jest

$$a_{n7} = \sqrt{\beta_6^{\bullet} - 1/\beta_6^{\bullet}} / \sqrt{\lambda_{n7} \cdot \lambda_6^{\bullet}} , \qquad (3.12a)$$

a po przemnożeniu stronami przez λ_{n7} i po podniesieniu do kwadratu jest

$$a_{n7}^{2} \cdot \lambda_{n7} = \left(\beta_{6}^{\bullet} - 1/\sqrt{\beta_{6}^{\bullet}}\right) / \lambda_{6}^{\bullet} = a_{6}^{\bullet 2} \cdot \lambda_{6}^{\bullet} .$$
(3.12b)

W powyższym równaniu występują po lewej stronie dwie niewiadome i nie ma możliwości zapisania drugiego równania. Wyznaczenie ścisłych wartości smukłości λ_{n7} i ugięcia krytycznego jest jednak możliwe. W tym celu równanie wg zapisu (3.12b) przemnażamy stronami przez wartość $\beta_6^{\bullet 1.5}$ i po uporządkowaniu zapisu będzie

$$a_{n7}^{2} \cdot \lambda_{n7} \frac{\beta_{6}^{\bullet 1,5}}{\beta_{6}^{\bullet 1,5} - 1} = \frac{\beta_{6}^{\bullet}}{\lambda_{6}^{\bullet}} .$$
(3.12c)

Okazuje się, że lewa strona powyższego zapisu określa krytyczne odkształcenie ściskanego pręta o smukłości λ_{n7}

$$\frac{\pi^2}{\lambda_{n7}^2} = \frac{\beta_6^{\bullet}}{\lambda_6^{\bullet}}$$
(3.12d)

skąd smukłość

$$\lambda_{n7} = \pi \sqrt{\lambda_6^{\bullet} / \beta_6^{\bullet}} . \qquad (3.13)$$

Przy smukłościach $\lambda_{ni} \leq \lambda_{n4}$ tworzymy zależność na określenie modułu E_{wni}

$$E_{wni} = E_{wn4} \left(\frac{\lambda_i^{\bullet}}{\lambda_3^{\bullet}} \right)^{\chi} = \frac{E}{\beta_3^{\bullet 1,5}} \left(\frac{\lambda_i^{\bullet}}{\lambda_3^{\bullet}} \right) .$$
(3.14)

Przy $E_{wni} = E_{wn7}$ wyznaczamy wartość wykładnika X z wzoru ogólnego

$$X = \frac{\ln(\beta_{3}^{\bullet 1,5} E_{wn7} / E)}{\ln(\lambda_{6}^{\bullet} / \lambda_{3}^{\bullet})} = \frac{\ln(\beta_{3}^{\bullet 1,5} \lambda_{n7}^{2} / \lambda_{5}^{2})}{\ln(\lambda_{6}^{\bullet} / \lambda_{3}^{\bullet})} .$$
(3.15)

Przy smukłościach $\lambda_6^{\bullet} \leq \lambda_i^{\bullet} \leq \lambda_3^{\bullet}$ na podstawie wzorów (2.13) i (3.9) możemy zapisać

$$E_{wni} = 1 / \left[\frac{1}{\sigma_{ni}} \left(\frac{\pi^2}{\lambda_{ni}^2} - \frac{\pi^2}{\lambda_{ni}^{\bullet 2}} \right) + \frac{\beta_i^{\bullet}}{E} \right]$$
(3.17)

i porównując z (3.14) otrzymujemy wzór na smukłość rzeczywistą

$$\lambda_{ni} = \sqrt{\frac{\beta_i^{\bullet} \lambda_i^{\bullet(X+2)}}{\beta_3^{\bullet 1.5} \lambda_3^{\bullet X}}} = \sqrt{\frac{\lambda_r^{\zeta} \lambda_i^{\bullet(X+2-\zeta)}}{\beta_3^{\bullet 1.5} \lambda_3^{\bullet X}}} , \qquad (3.17)$$

z którego wyznaczamy wzór na smukłość fikcyjną

$$\lambda_{i}^{\bullet} = \left(\beta_{3}^{\bullet 1,5} \lambda_{3}^{\bullet X} \lambda_{ni}^{2} / \lambda_{r}^{\zeta}\right)^{1/(X+2-\zeta)} .$$
(3.18)

Wyprowadzone wzory umożliwiają wykonanie wykresu linii naprężeń niszczących $\sigma_{_{ni}}$ przy smukłościach $\lambda_{_{ni}} < \lambda_{_{n4}}$ oraz gdy $\lambda_i^{\bullet} < \lambda_3^{\bullet}$.

Przekształcając wzór (2.14) do postaci ogólnej

$$E_{wni} = 1 / (1 / E + \Delta \varepsilon_{trwni} / \sigma_{ni}) , \qquad (3.19)$$

otrzymamy wzór na trwałe odkształcenie występujące w osi pręta

$$\Delta \varepsilon_{trwni} = \sigma_{ni} (1/E_{wni} - 1/E) , \qquad (3.20)$$

natomiast w dowolnym punkcie przekroju, gdy $\sigma_i = \sigma_{ni} \pm \sigma_{gni}$ wartość trwałego odkształcenia $\Delta \varepsilon_{nvi}$ określa wzór (2.16).

Możemy zatem zapisać wzór ogólny na bilans prac przy $\sigma_{n7} = R_{e}$

$$2L_{zgn7} + L_{scn7} = L_{E6} = \left(\lambda_{H} / \lambda_{6}^{\bullet}\right)^{3} L_{H}$$
(3.21)

i bilans energii

$$2U_{zgn7} + U_{scn7} = U_{E6} = \left(\lambda_{H} / \lambda_{6}^{\bullet}\right)^{3} U_{H} , \qquad (3.22)$$

a po rozwinięciu wyrazów otrzymamy

$$2\frac{\left(P_{n7}f_{n7}\right)^{2}l_{n7}}{4E_{wn7}J} + \frac{P_{n7}^{2}l\sqrt{E/E_{wn7}}}{2EA} = \frac{P_{E6}^{2}l_{6}}{2EA} = \left(\frac{\lambda_{H}}{\lambda_{6}^{\bullet}}\right)^{3}U_{H} \quad (3.23)$$

Przykład obliczeniowy

Przy $\lambda_5 = 71,8204$, gdy $\lambda_r = 355,205 \text{ i } \zeta = 1/10,2623$ otrzymujemy $\lambda_r^{\zeta} = 1,77218$, $f_6^{\bullet} = 0,0127 \text{ cm}$ wg (2.19) $\lambda_6^{\bullet} = 66,1754$, $l_6^{\bullet} = 1,6544 \text{ cm}$ $\beta_6^{\bullet} = 1,177895$, $a_6^{\bullet} = 0,0076532$.

Przy tych wartościach z (3.1) otrzymujemy

$$\sigma_6^{\bullet} = \frac{\pi^2 E}{\lambda_6^{\bullet 2} \beta_6^{\bullet}} = 402 \text{ MPa} = R_e .$$

Odkształcenie trwałe między punktami 5-6 określimy z zależności

$$\Delta \varepsilon_{trw6}^{\bullet} = \frac{\pi^2}{\lambda_6^{\bullet2}} - \frac{\pi^2}{\lambda_5^{\circ2}} = 0,00034 ,$$

$$\Delta \varepsilon_{trw6}^{\bullet} = \varepsilon_k (\beta_6^{\bullet} - 1) = \frac{\pi^2}{\lambda_5^{\circ2}} (\beta_6^{\bullet} - 1) = 0,00034 .$$

Przy powyższych odkształceniach trwałych z wzoru (3.7) otrzymamy

$$E_{w6}^{\bullet} = \frac{1}{\frac{1}{E} + \frac{0,00034}{402}} = 178368MPa = \frac{E}{\beta_6^{\bullet}} .$$

Przy smukłości $\lambda_{6}^{\bullet} = \lambda_{6}$ wyznaczamy z hiperboli Eulera siłę ściskającą

$$P_{E6} = \pi^2 EA / l_6^2 = 37,19 \text{ daN}$$

i w związku z tym otrzymamy pracę ściskania

$$L_{E6} = P_{E6} \frac{\Delta l_{k6}}{2} = P_{E6} \frac{\pi^2 i}{2\lambda_6} = 0,0069332 \text{ J} = \left(\frac{\lambda_H}{\lambda_6^{\bullet}}\right)^3 U_H .$$

Przy sile niszczącej $P_{n7} = R_e A = 31,573$ daN, na podstawie (3.10) po rozwinięciu wyrazów otrzymujemy:

$$2\frac{\pi^2 f_{n7}^2}{4l_{n7}} + \frac{\pi^2 i^2}{2l_{n7}\sqrt{E/E_{wn7}}} = 0,0022 \text{ cm}.$$

a po uporządkowaniu składników zapisu otrzymujemy

$$\frac{f_{n7}^{2}}{l_{n7}} = \frac{a_{n7}^{2} \cdot l_{n7}^{2}}{l_{n7}} = a_{n7}^{2} \cdot \lambda_{n7} \cdot i = 9,6892 \cdot 10^{-5} \,\mathrm{cm} \,,$$

skąd iloczyn $a_{n7}^2 \lambda_{n7} = 3,8757 \cdot 10^{-3}$.

Rozpatrzmy układy występujące w p. 3 i 4 wykresu na rys. 2.1. Z zapisu poprzednich przykładów obliczeniowych wynika, że praca zginania $L_{zg3}^{\bullet} = L_{zg4}$ oraz $L_{sc3}^{\bullet} = L_{sc4}$. Wyniki te wskazują, że przy jednakowych siłach $P_3^{\bullet} = P_{n4} = R_H \cdot A$ występują jednakowe zbliżenia końców prętów od zginania i ściskania. Zapiszmy zatem równość

$$\Delta l_{zgn4} = \frac{\pi^2 f_{n4}^2}{4 l_{n4}} = \frac{\pi^2 f_3^{\bullet 2}}{4 l_3^{\bullet}} = \Delta l_{zg3}^{\bullet} ,$$

z której jest

$$\frac{a_{n4}^2 l_{n4}^2}{l_{n4}} = \frac{a_3^{\bullet 2} l_3^{\bullet 2}}{l_3^{\bullet}}$$

i ostatecznie otrzymujemy

$$a_{n4}^2 \cdot \lambda_{n4} = a_3^{\bullet 2} \cdot \lambda_3^{\bullet} = 3,1616 \cdot 10^{-3}$$
,

a iloraz ugięć

$$\frac{f_3}{f_{n4}} = \frac{0,0121655}{0,0119369} = 1,019150,$$

iloraz smukłości zaś

$$\frac{\lambda_3^{\bullet}}{\lambda_{n4}} = \frac{74,89930}{72,11257} = 1,03865 = \beta_3^{\bullet 1/4} = \left(\frac{f_3^{\bullet}}{f_{n4}}\right)^2$$

Przy granicy plastyczności R_e w prętach o smukłościach λ_6^{\bullet} i λ_{n7} występują również jednakowe zbliżenia ich końców. Wykorzystując wzór (3.13) zapisujemy podobnie jak w powyższym podanym wzorze, że przy granicy plastyczności jest

$$\frac{\lambda_6^{\bullet}}{\lambda_{n7}} = \frac{\lambda_6^{\bullet}\sqrt{\beta_6^{\bullet}}}{\pi\sqrt{\lambda_6^{\bullet}}} = \frac{\sqrt{\lambda_6^{\bullet}\beta_6^{\bullet}}}{\pi} = \left(\frac{f_6^{\bullet}}{f_{n7}}\right)^2 .$$

Przy granicy plastyczności $R_e = R_{0,2} = 402$ MPa występują więc:

wg (3.13) $\lambda_{n7} = 23,547498, l_{n7} = 0,5886874 \text{ cm},$ oraz $f_{n7} = 0,0075527 \text{ cm},$ $a_{n7} = f_{n7} / l_{n7} = 0,0128297,$

$$\Delta l_{kn7} = \pi^2 i / \lambda_{n7} = 0,104784 \text{ cm},$$

$$\Delta l_{zgn7} = \pi^2 f_{n7}^2 / 4 l_{n7} = 2,3909 \cdot 10^{-4} \text{ cm},$$

$$E_{wn7} = E \lambda_{n7}^2 / \lambda_5^2 = E \cdot 0,1074954 = 22584,779 \text{ MPa},$$

wg (3.12)

$$R_e = E_{wn7} \cdot \pi^2 / \lambda_{n7}^2 = 402 \text{ MPa}.$$

Otrzymane wyniki potwierdzają ścisłość zależności wskazujących na słuszność wzoru (3.13). W rozdziale 10 niniejszej pracy udowodnimy dodatkowo, że wzór (3.13) jest ścisły.

Na podstawie (3.12c) i (3.12d) możemy zapisać równość

$$\frac{\pi^2}{\lambda_{n7}^2} = \frac{f_{n7}^2}{\lambda_{n7}^2 i^2} \cdot \lambda_{n7} \frac{\beta_6^{\bullet 1,5}}{\beta_6^{\bullet 1,5} - 1} ,$$

skąd po przekształceniach otrzymujemy

$$f_{n7}^{2} \cdot \lambda_{n7} = \pi^{2} \cdot i^{2} \frac{\beta_{6}^{\bullet 1,5} - 1}{\beta_{6}^{\bullet 1,5}} \quad .$$

Przy $\beta_6^{\bullet}=1,177895$ oraz i = d / 4 = 1 / 40 cm wartość prawej strony równości – odniesionej do hiperboli β^{\bullet} – wynosi 1,34325 cm², natomiast wartość lewej strony – odniesionej do linii naprężeń niszczących σ_n – wynosi również 1,34323·10⁻³ cm² i to jest potwierdzeniem, że zapis (3.12d) jest prawidłowy.

Według (3.11) wartość rzeczywistego modułu w p. 7 linii naprężeń σ_n wynosi

$$E_{wn7} = \lambda_{n7}^2 R_e / \pi^2 = 22585 \text{ MPa}$$
.

Przy $\lambda_5 = 71,82074$ i $\beta_3^{\bullet} = 1,163$, gdy $\lambda_{n7} = 23,547498$ otrzymujemy z (3.15)

$$X = \frac{\ln 0,1349555}{\ln 0,8835248} = 16,173099 .$$

Przy granicy plastyczności $R_e = 402$ MPa w osi pręta o przekroju kołowym pełnym i smukłości λ_{n7} jego odkształcenie wynosi

$$\varepsilon_{n7} = R_e / E_{wn7} = \pi^2 / \lambda_{n7}^2 = 0,0177996$$
,

a trwałe odkształcenie

$$\Delta \varepsilon_{\mu w 7} = \pi^2 / \lambda_{n7}^2 - \pi^2 / \lambda_5^2 = 0.0158862$$

Jak wcześniej obliczono siła $P_{_{F6}}$ = 37,19 daN, skąd praca ściskania wynosi

$$L_{E6} = P_{E6} \Delta l_{k6} / 2 = P_{E6} \frac{\pi^2 i^2}{2l_6} = 0,0069332J = \left(\frac{\lambda_H}{\lambda_6^{\bullet}}\right)^3 U_H .$$

Przy sile

$$P_6^{\bullet} = R_e \cdot A = 31,5730 \text{ daN}$$

otrzymamy pracę zginania

$$L_{zg6}^{\bullet} = P_6^{\bullet} \frac{\pi^2 f_6^{\bullet 2}}{4l_6^{\bullet}} = 0,00075480 \text{ J}$$

oraz pracę ściskania

$$L^{\bullet}_{sc6} = P_6^{\bullet} \frac{\pi^2 i}{2\lambda_6^{\bullet} \sqrt{\beta_6^{\bullet}}} = 0,00542345 \,\mathrm{J} \,,$$

a bilans pracy

$$2L_{zg6}^{\bullet} + L_{sc6}^{\bullet} = 0,0069332 \text{ J} = L_{E6}$$

W odniesieniu do pręta stalowego przy sile $P_{n7} = P_6^{\bullet}$, przy ugięciu rzeczywistym $f_{n7} = a_{n7} \cdot l_{n7} = 0,0075527$ cm otrzymamy pracę zginania

$$L_{zgn7} = P_{n7} \frac{\pi^2 f_{n7}^2}{4l_{n7}} = 0,00075480 \text{ J} = L_{zg6}^{\bullet},$$

a praca ściskania wynosi

$$L_{scn7} = P_{n7} \frac{\pi^2 i}{2l_{n7} \sqrt{E/E_{n7}}} 0,00542345 J = L_{sc6}^{\bullet} .$$

Bilans prac jest zgodny z podanym powyżej:

$$2L_{zon7} + L_{scn7} = 0,0069332 \text{ J} = L_{E6}$$

4. TEORETYCZNE WYKRESY LINII NAPRĘŻEŃ NISZCZĄCYCH σ,

W celu ułatwienia wykreślenia wykresów $\sigma_n = \sigma_n(\lambda)$, sporządzono tablicę 4.1, w której podano obliczone na podstawie pracy [1] współczynniki w odniesieniu do 4-ech różnych przekrojów prętów, wykonanych ze stali D50, przyjętego do rozważań. W celu wykonania prawidłowych wykresów teoretycznych należy w kolejności obliczyć:

- smukłość fikcyjną λ_6^{\bullet} wg (3.5), (smukłość λ_r i ζ , wg tablicy 4.1),
- współczynnik β_6^{\bullet} wg wzoru (3.3),
- $-\operatorname{iloczyn} a_6^{\bullet 2} \cdot \lambda_6^{\bullet} = \left(\beta_6^{\bullet} 1/\sqrt{\beta_6^{\bullet}}\right) / \lambda_6^{\bullet} \operatorname{wg} (3.12b)$
- smukłości λ_{n7} wg wzoru (3.13),
- wykładnik X wg wzoru (3.15), (współczynnik β_3^{\bullet} wg tablicy 4.1).

Według powyższych wskazań wykonano obliczenia zestawione w tablicach 4.2 ÷4.5, w odniesieniu do 4-ech różnych przekrojów pręta, podanych w tablicy 4.1.

W poszczególnych kolumnach powyższych tablic podano numery wzorów, na podstawie których wykonano obliczenia. Na rysunkach 4.1 ÷ 4.4 przedstawiono graficzną ilustrację wyników obliczeń. Krzyżykami określono punkty wyznaczone współrzędnymi (λ_{ni} , σ_{ni}) wg kolumn 2 i 7 tablic podanych nad każdym rysunkiem. Linie teoretycznych naprężeń niszczących σ_{ni} – przy różnych przekrojach poprzecznych – są bardzo podobne.

Niepokojące są podane w dolnej części każdego rysunku rzeczywiste wartości współczynników pewności $n = \sigma_{ni} / \sigma_{dop}$, odniesione do poszczególnych smukłości λ ... Ich średnia wartość wynosi zaledwie $n \approx 1,26$, a powinno być co najmniej $n \approx 1,75$.

	, proportiona	
_	МРа	
orętów	402	
lia μ	 ∼°	
CZel	oint <i>F</i>	
vybc	d pc	
nii <	yiel	
ila li	0 of	
czel	I D5	
/zna	stee	~
Ś	for	40.0
¢ ∧	sults	
nikó	fres	4
zyn	o uc	
spóła	aris	200
e WS	dmc	č
ieni	ŭ	L
staw	е 4	4
Ze	Tabl	
4.	-	0
olica	ole 4.	
_	_	

Table 4.1. Table 4.1. Comparison of results for steel D50 of yield point $R_{e} = 402$ MPa, proportional limit $R_{H} = 317$ MPa	and Young modulus E = 210100 MPa for which $\lambda_{_H}$ 80,8
--	--

Tablica 4 Table 4.1 and Your	1. Zestav I. Table 4 Jl modulu	wienie w: .1. Comp Is <i>E</i> = 21	spółczyni parison of 0100 MP	ników do v f results fc 'a for whic	wyznaczeni or steel D50 sh λ_{H} 80,8	a linii wybocz of yield point	enia prętó t $R_{_{\theta}}$ = 402	w MPa, pro	portional limit R_{H} =	= 317 MPa
Kształt przekroju pręta	$\frac{W}{A_i}$	X,	β	$\zeta = \frac{\ln\beta_2}{\ln X_r}$	$\lambda_r = X_r \cdot \lambda_H$	$\lambda_3^{\bullet} = \left(\frac{\lambda_3^2}{\lambda_r^2}\right)^{\frac{1}{2-\zeta}}$	$\beta_3^{\bullet} = \left(\frac{\lambda_r}{\lambda_3^{\bullet}}\right)^{\zeta}$	$\lambda_4 = \frac{\lambda_H}{\beta_3^{\bullet0,75}} {}^{\prime}$	$\Delta \varepsilon_{nw3} = \frac{R_H}{E} \left(\beta_3^* - 1 \right) \Delta$	$\mathbf{E}_{\mathbf{r}_{w,4}} = \frac{R_H}{E} \left(\beta_3^{\bullet,5} - 1 \right)$
		wg (1.14)	wg (1.11)	wg (1.12)		wg (2.5)	wg (2.4)	wg (2.11)	wg (4.3)	
1	2	3	4	5	6	7	8	6	10	11
	1/2	4,3961	1,1552	1/10,2632	355,205	74,899	1,1638	72,113	2,476 · 10 ⁻⁴	3,863 · 10 ⁻⁴
-	$1/\sqrt{3}$	3,4798	1,1952	1/6,9919	281,169	73,401	1,2118	69,959	$3,202\cdot 10^{4}$	5,049 · 10 ⁻⁴
	g = 0,05D 0,53009	3,9884	1,1709	1/8,7677	322,265	74,3151	1,1821	71,2705	2,7535 · 10 ⁻⁴	4,313 · 10 ⁻⁴
	g = 0,05H 0,61209	3,1836	1,2125	1/6,0099	257,235	72,7401	1,2339	69,0168	3,5358 · 10 ⁻⁴	5,6028 · 10 ⁻⁴
Współcz granicę p	ynniki w ko vroporcjonal	lumnach 6 ności $R_{H}^{=}$	+11 dotyc 317,62 MP	zą stali D50 ³ a i <i>E</i> = 2101	wykazującej $\{1, \lambda_{\mu}\}$	granicę plastyczi $_{H}$ = 80,8.	ności $R_e = 40$	2,0 MPa,		

Poz.	λ_{ni}		λ_i^{ullet}		β_i^{\bullet}		$\sigma_{\beta_i^{\bullet}} = \frac{\pi^2 E}{\lambda_i^{\bullet 2} \beta}$	E _{wni}		$\sigma_{ni} = \frac{\pi^2 E_{wni}}{\lambda_{ni}^2}$
							[MPa]	[MPa]		[MPa]
1	2		3		4		5	6		7
1	23,54750	(3.13)	66,17539	(3.5)	1,177895		402,00	22585,0		402,00
2	35		69,14187		1,172873	.11)	369,82	45901,7	3.14	369,80
3	50		71,92502	.18)	1,168372	vg (1	343,07	86901,0	mg (343,00
4	60		73,39071	vg (3	1,166078		330,15	120425,6		330,15
5	70		74,65321		1,164141		319,12	158679,0		319,10
6	72,11257	(3.12)	74,8993	(2.6)	1,16377	[1]	317,62	167351,9	.8)	317,62
7	75		76,8855	5)	1,16080	g (1.]	302,19	177227,3	g (2	302,19
8	78		78,9224	[5]	1,15785	3M	287,52	177240,2	13	287,52
9	80,8		80,8	8 Mg	1,15520		274,94	181873,3		274,94

Tablica 4.2. Zestawienie obliczeń w odniesieniu do przekroju kołowego pełnego Table 4.2. Comparison of results for filled circular cross-section

Rys.4.1. Wykres teoretycznych naprężeń niszczących σ_{ni} wykonany na podstawie tablicy 4.2 Fig.4.1. Theoretical failure stresses σ_{ni} plotted from results put presented in table 4.2

Poz.	$\lambda_{_{ni}}$		λ_i^{ullet}		β_i^{\bullet}		$\sigma_{\mathbf{\beta}_{i}^{\bullet}} = \frac{\pi^{2}E}{\lambda_{i}^{\bullet 2}\beta}$	E _{wni}		$\sigma_{ni} = \frac{\pi^2 E_{wni}}{\lambda_{ni}^2}$
							[MPa]	[MPa]		[MPa]
1	2		3		4		5	6		7
1	23,23444	(3.13)	65,58757	(3.5)	1,199103		402,00	21988,3	(402,00
2	35		68,65190		1,192875	1.11)	368,83	45778,6	3.14	368,80
3	50		71,46609	.18)	1,187478	Ng (342,19	86677,3	ng w	342,20
4	60		72,90250	vg (3	1,184729		329,32	120122,2		329,30
5	70		73,55591	1	1,183524		323,83	138624,7		323,80
6	71,2705	(3.12)	74,31507	(2.6)	1,18214	(1)	317,62	163466,1	(8)	317,62
7	75		76,88553	12)	1,17756	g (1.	297,89	169776,9	'g (2	297,89
8	78		78,92238	g (2. j	1,17406	3m	283,55	174791,0	12	283,55
9	80,8		80,8	M	1,17090		271,26	179434,7		271,26

Tablica 4.3. Zestawienie obliczeń w odniesieniu do rury o zarysie kołowym Table 4.3. Comparison of results for tubular cross-section

Rys.4.2. Wykres teoretycznych naprężeń niszczących σ_{ni} wykonany na podstawie tablicy 4.3 Fig.4.2. Theoretical failure stresses σ_{ni} plotted from results presented in table 4.3

Poz.	λ_{ni}		λ_i^{ullet}		β_i^{\bullet}		$\sigma_{\beta_i^{\bullet}} = \frac{\pi^2 E}{\lambda_i^{\bullet 2} \beta}$	E _{wni}		$\sigma_{ni} = \frac{\pi^2 E_{wni}}{\lambda_{ni}^2}$
							[MPa]	[MPa]		[MPa]
1	2	-	3		4		5	6		7
1	22,74037	(3.13)	64,65419	(3.5)	1,233961		402,00	21063,0		402,00
2	35		68,43375		1,223975	.11)	361,75	44900,3	3.14	361,75
3	50		70,94837	3.18)	1,217674	vg (1	338,30	85693,9	mg (338,30
4	60		72,26925	gv G	1,214466	-	326,90	119243,9		326,90
5	70		72,85688		1,213060		322,00	137856,9		322,00
6	69,95942	(3.12)	73,40088	(2.6)	1,211702	[])	317,62	15750,5	(8)	317,62
7	75		76,88553	5	1,203758	1.	291,40	166081,0	'g (2	291,40
8	78		78,92238	[2.1]	1,199265	3M	277,60	171119,5	м	277,60
9	80,8		80,8	8 a	1,195200		265,74	175786,5		265,75

Tablica 4.4. Zestawienie obliczeń w odniesieniu do przekroju kwadratowego pełnego Table 4.4. Comparison of results for square cross-section

Rys.4.3. Wykres teoretycznych naprężeń niszczących σ_{ni} wykonany na podstawie tablicy 4.4 Fig.4.3. Theoretical failure stresses σ_{ni} plotted from results presented in table 4.4

Poz.	$\lambda_{_{ni}}$		λ_i^{ullet}		β_i^{ullet}		$\sigma_{\beta_i^{\bullet}} = \frac{\pi^2 E}{\lambda_i^{\bullet 2} \beta}$	E _{wni}		$\sigma_{ni} = \frac{\pi^2 E_{wni}}{\lambda_{ni}^2}$
							[MPa)]	[MPa]		[MPa]
1	2		3		4		5	6		7
1	22,37970	(3.13)	63,96898	(3.5)	1,260552		402,00	20400,2		402,00
2	35		67,31768		1,249895	1.11)	366,10	45439,1	3.14	336,10
3	50		70,11369	.18)	1,237544) gw	340,85	86337,6	wg (340,85
4	60		71,58748	vg (3	1,237171		327,06	119295,7		327,06
5	70		72,24426		1,235292		321,62	137681,8		321,60
6	69,00168	(3.12)	72,74010	(2.6)	1,233890	(1)	317,62	153222,0	.8)	317,62
7	75		76,88553	[2]	1,222560	g (1.]	286,92	163526,9	g (2	286,92
8	78		78,92238	2.]	1,217528	3M	273,49	168590,9	≥	273,49
9	80,8		80,8	M	1,212500		261,95	173278,4		261,95

Tablica 4.5. Zestawienie obliczeń w odniesieniu do rury o zarysie kwadratowym Table 4.5. Comparison of results for square box cross-section

Rys.4.4. Wykres teoretycznych naprężeń niszczących σ_{ni} wykonany na podstawie tablicy 4.5 Fig.4.4. Theoretical failure stresses σ_{ni} plotted from results presented in table 4.5

5. ANALIZA WYNIKÓW BADAŃ Z. WASIUTYŃSKIEGO [6]

Z. Wasiutyński w latach 1928-32 przeprowadził badania ściskanych prętów stalowych o przekroju kołowym pełnym z podstawkami, przedstawione na rys. 5.1. Pręty zachowywały się jak obustronnie utwierdzone, o długości wyboczeniowej l_w . Pręty ze stali chromo niklowej (4 seria badań), ówczesnej marki "Poldi- CNS", charakteryzowały się następującymi parametrami: wytrzymałość $R_m = 965$ MPa, granica plastyczności $R_e = 877,5$ MPa, granica proporcjalności $R_H = 605$ MPa, moduł Young'a E = 206500 MPa, smukłość $\lambda_H = 58,041$.

Rys.5.1. Pręt z podstawkami Fig.5.1. Test bar with stands

Wyniki badań tej serii próbek przedstawiono w tablicy 5.1 przyjmując następujące oznaczenia: d – średnica przekroju pręta, P_n – siła niszcząca, σ_n – naprężenie niszczące. Aby przeprowadzić porównanie wyników badań doświadczalnych z przedstawioną teorią, przyjęto, że pręty są podparte obustronnie w idealnych przegubach, a ich smukłość będzie równa połowie smukłości λ_w podanej w tablicy 5.1.

Z tablicy 4.1 w przypadku przekroju kołowego pełnego przyjmuje się wykładnik $\zeta = 1/10,2632$, współczynnik $\beta_3^{\bullet} = 1,16377$ oraz $X_r = 4,3961$. Na tej podstawie wyznacza się smukłość fikcyjną $\lambda_3^{\bullet} = 53,802$, smukłść rozdzielającą $\lambda_r = 255,152$, a $\lambda_r^{\zeta} = 1,71596$, oraz smukłość $\lambda_{r4} = 51,800$.

Według wzoru (2.12) przy $\lambda_{n4} \leq \lambda_{ni} \leq \lambda_H$ smukłość określa następujący wzór: $\lambda_i^{\bullet} = (\lambda_{ni}^2 \cdot \lambda_H)^{1/3}$. Smukłość λ_5 wynosi: $\lambda_5 = \pi \sqrt{E/R_e} = 48,19326$. Na podstawie wzoru (3.5) $\lambda_6^{\bullet} = 44,25048$, według (3.3) współczynnik $\beta_6^{\bullet} = 1,186142$, natomiast według (3.13) smukłość $\lambda_{n7} = 19,18847$. Na podstawie (3.15) wykładnik X = 8,259744.

Na podstawie wzoru (3.18) można zapisać zależność na określenie smukłości fikcyjnych przy $\lambda_{ni} \leq \lambda_{n4}$ w postaci :

$$\lambda_{i}^{\bullet} = \left(1,4463 \cdot 10^{14} \cdot \lambda_{ni}^{2}\right)^{0,098403}$$

Nr pręta	d	A	i	l _w	$\lambda_w = \frac{l_w}{i}$	P_n	$\sigma_n = \frac{P_n}{A}$
	[cm]	[cm ²]	[cm]	[cm]		[daN]	[MPa]
57	0,896	0,6505	0,2240	33,96	151,8	1970	302,8
51	1,101	0,9521	0,2752	30,20	109,7	4880	512,6
53	1,100	0,9503	0,2749	24,48	89,1	5950	626,1
47	1,098	0,9503	0,2746	22,78	80,0	6460	682,2
54	1,099	0,9486	0,2747	19,22	70,0	6900	727,4
63	1,099	0,9486	0,2747	10,95	39,8	8220	866,5

Tablica 5.1 Wyniki z 4-tej serii badań Z. Wasiutyńskiego	[6]
Table 5.1. Results of 4-th series of Z. Wasiutyński tests	[6]

Na podstawie powyższych parametrów obliczono naprężenia niszczące zestawiając je w tablicy 5.2. Wyniki te umożliwiają wykonanie na rys. 5.2 wykresu teoretycznych naprężeń niszczących $\sigma_{ni} = \sigma_{nt}$, a krzyżyki z numerami prętów wyznaczają naprężenia σ_n .

Tablica 5.2. Zestawienie wyników obliczeń do wykonania wykresu σ_{ni} na rys. 5.2 Table 5.2. Calculation results for σ_{ni} presentation at fig. 5.2

Nr pręta	$\lambda_{ni} = \frac{\lambda_w}{2}$	λ_i^{\bullet}	$\beta_i^{\bullet} = \left(\frac{\lambda_r}{\lambda_i^{\bullet}}\right)^{\zeta}$	$\sigma_{ni} = \frac{\pi^2 E}{\lambda_i^2 \beta_i^{\bullet}}$	σ_n	$\frac{\sigma_{ni}}{\sigma_n}$
				[MPa]	[MPa]	
57	75,90	75,90	1,1254	314,36	302,80	1,0382
51	54,95	55,962	1,1593	561,36	512,60	1,0951
53	44,55	52,229	1,1671	640,16	626,10	1,0225
47	40,00	51,133	1,1696	669,49	682,20	0,9814
54	35,00	49,807	1,1726	700,66	727,40	0,9632
53	19,90	44,569	1,1853	865,61	866,50	0,9990

W kolejnej piątej serii badań Z. Wasiutyńskiego stosowano pręty ze stali chromo-niklowej "TEM-Poldi", o następujących właściwościach: $R_m = 679$ MPa, $R_e = 531$ MPa, $R_H = 365$ MPa, E = 214300 MPa oraz smokłości $\lambda_H = 76,123$. Wyniki tych badań zawarte są w tablicy 5.3. Wyznaczone na podstawie wzorów teorytycznych wartości wykładnika ζ , współczynnika β_3° oraz X_r są takie jak poprzednio, według tablicy 4.1. Ponadto, smukłość fikcyjna wynosi $\lambda_3^{\circ} = 70,56386$, smukłość rozdzielająca $\lambda_r = 334,643$ oraz $\lambda_r^{\varsigma} = 1,76191$, natomiast smukłość $\lambda_{n4} = 67,93843$.

Rys.5.2. Wykres teoretycznych naprężeń σ_{ni} dla prętów ze stali "Poldi-CNS" Fig.5.2. Theoretical failure stresses σ_{ni} for specimens made of "Poldi-CNS" steel

Nr pręta	d	A	i	l _w	$\lambda_{w} = \frac{l_{w}}{i}$	P_n	$\sigma_n = \frac{P_n}{A}$
	[cm]	[cm ²]	[cm]	[cm]		[daN]	[MPa]
76	1,001	0,7870	0,25025	36,31	146,29	2340	297,3
78	1,002	0,7875	0,25050	35,07	140,00	2740	347,5
79	1,002	0,7875	0,25050	35,07	140,00	2710	343,7
77	1,001	0,7870	0,25025	31,70	126,68	2990	379,9
75	1,000	0,7870	0,25000	26,55	106,60	3400	433,0
73	1,000	0,7854	0,25000	21,62	86,48	3860	491,5
71	1,000	0,7854	0,25000	16,71	66,84	4050	515,8
70	1,001	0,7870	0,25025	11,64	46,14	4010	509,5
69	1,001	0,7870	0,25025	6,72	26,86	4660	592,1

Tablica 5.3. Wyniki 5-tej serii badań Z. Wasiutyńskiego [6] Table 5.3. Results of 5-th series of Z. Wasiutyński tests [6]

Podstawiając wartości odpowiednich parametrów otrzymuje się: $\lambda_5 = \pi \sqrt{E/R_e} = 63,11226$, stąd wg (3.5) smukłość $\lambda_6^{\bullet} = 57,94264$, a współczynnik $\beta_6^{\bullet} = 1,186329$. Na podstawie (3.13) smukłość $\lambda_{n7} = 21,95566$, natomiast według (3.15) wykładnik X = 9,56155. Zatem można zapisać zależność na określenie smukłości fikcyjnych przy $\lambda_{ni} \leq \lambda_{n4}$ według (3.18) w postaci :

$$\lambda_{i}^{\bullet} = \left(3,3768 \cdot 10^{17} \cdot \lambda_{ni}^{2}\right)^{0,0872272}$$

Wyniki obliczeń zestawiono w tablicy 5.4, natomiast na rys. 5.3 przedstawiono wykres teoretycznie wyznaczonych naprężeń niszczących wraz z punktami reprezentującymi wyniki doświadczeń.

Tablica 5.4. Zestawienie wyników obliczeń do wykonania wykresu σ_{ni} na	rys.	5.3
Table 5.4. Calculation results for σ_{ni} presentation at fig. 5.3		

Nr pręta	$\lambda_{ni} = \frac{\lambda_w}{2}$	λ_i^{ullet}	$\beta_i^{\bullet} = \left(\frac{\lambda_r}{\lambda_i^{\bullet}}\right)^{\zeta}$	$\sigma_{ni} = \frac{\pi^2 E}{\lambda_i^2 \beta_i^{\bullet}}$	σ_n	$\frac{\sigma_{ni}}{\sigma_n}$
				[MPa]	[MPa]	
76	73,145	74,124	1,1582	332,37	297,30	1,1180
78	70,000	71,099	1,1629	359,79	347,50	1,0354
79	70,000	71,099	1,1629	359,79	343,70	1,0468
77	63,340	69,693	1,1652	373,37	379,90	0,9837
75	53,300	67,638	1,1686	395,62	433,00	0,9100
73	43,240	65,215	1,1727	424,05	491,50	0,8628
71	33,420	62,349	1,1779	461,92	515,80	0,8955
70	23,070	58,527	1,1852	520,98	509,50	1,0225
69	13,430	53,209	1,1997	622,72	592,10	1,0517

Rys.5.3. Wykres teoretycznych naprężeń σ_{ni} dla prętów ze stali "TEM-Poldi" Fig.5.3. Theoretical failure stresses σ_{ni} for specimens made of "TEM-Poldi" steel

Z wykresów wynika, że wyniki doświadczeń są zbliżone do teoretycznych linii σ_{ni} . Według tablicy 5.2 średnia wartość $(\sigma_i / \sigma_n)_{sr}$ wynosi 1,0165, a z tablicy 5.4 $(\sigma_i / \sigma_n)_{sr}$ wynosi 0,9918. Analiza wyników badań Z. Wasiutyńskiego wskazuje, że o niszczeniu ściskanych prostych prętów decyduje adekwatna energia określona wzorem (2.35).

6. BADANIA WŁASNE ŚCISKANYCH PRĘTÓW O SMUKŁOŚCIACH $\lambda < \lambda_{\mu}$

6.1. MATERIAŁY I PRÓBKI

W celu potwierdzenia przedstawionej teorii autor przeprowadził badania nad ściskaniem prętów krępych wykonanych ze stali budowlanych 18G2A i St4SX. Wzorując się na badaniach Z. Wasiutyńskiego, zastosowano próbki w postaci prętów z podstawkami, przedstawione na rys. 6.1. Na końcówki centrujące \$\phi4k6\$ wciskano hartowane nasadki stożkowe, które wraz z prętem wprowadzano do gniazd stożkowych w głowicy i belce poprzecznej prasy "Instron", co zapewniało zachowanie osiowych obciążeń prętów.

Pręty stalowe o średnicy d = 13 mm. Przecięto na odcinki 1 m i poddano zabiegowi rekrystalizacji w celu otrzymania jednolitej struktury materiału, pozbawionej wpływu walcowania oraz przeciągania. Próbki wykonane z rekrystalizowanej 18G2A charakteryzowały się następującymi parametrami określowymi w próbie rozciągania: wytrzymałość $R_m = 580$ MPa, granica plastyczności $R_e = 385,5$ MPa, granica proporcjonalności $R_H = 267$ MPa, moduł Yonga E = 210590 MPa oraz smukłość $\lambda_H = 88,23$. Próbki wykonane z rekrystalizowanej stali St4SX charakteryzowały się następującymi parametrami: $R_m = 455$ MPa, $R_e = 260$ MPa, $R_H = 148$ MPa, E = 210360 MPa, natomiast smukłość $\lambda_H = 118,44$.

Pręty do badań wykonano w tolerancji szeregu IT5 wg PN-80/M-02138, stosowanym w wykonawstwie przyrządów pomiarowych. Tylko taka dokładność wymiarowa i geometryczna prętów jest niezbędna, aby otrzymać prawidłowe wyniki.

Stosowane długości prętów wynikały z przyjętych smukłości λ_{ni} z godnie z następującą zależnością:

$$l_{wi} = i \ 2 \ \lambda_{ni}$$

6.2 WYNIKI DOŚWIADCZEŃ I OBLICZEŃ PRĘTÓW O PRZEKROJU KOŁOWYM ZE STALI 18G2A

Na podstawie tablicy 4.1 przyjmuje się współczynniki $\zeta = 1/10,2632$, $\beta_3^{\bullet} = 1,16377$ oraz $X_r = 4,3961$. Na podstawie (2.7) smukłość fikcyjna wynosi $\lambda_3^{\bullet} = 81,7867$, smukłość rozdzielająca $\lambda_r = 387,868$, natomiast $\lambda_r^{\zeta} = 1,78743$ oraz wg (2.11) smukłość rzeczywista $\lambda_{r4} = 78,74372$.

Postępując analogicznie jak opisano w rozdziale 5 otrzymuje się: smukłość $\lambda_5 = 73,42713$, wg $(3.5)\lambda_6^{\bullet} = 67,42773$, wg (1.11) współczynnik $\beta_6^{\bullet} = 1,185867$, a wg (3.13) smukłość $\lambda_{\pi7} = 23,68924$. Wówczas wg (3.15) X = 10,54111.

Na podstawie wzoru (3.18) przy $\lambda_{ni} \leq \lambda_{n4}$ smukłości fikcyjne oblicza się z zależności:

$$\lambda_{i}^{\bullet} = \left(\beta_{3}^{\bullet 1,5} \lambda_{3}^{\bullet X} \lambda_{ni}^{2} / \lambda_{r}^{\zeta}\right)^{1/(X+2-\zeta)} = \left(1,0195 \cdot 10^{20} \cdot \lambda_{ni}^{2}\right)^{0,080362}$$

Wyniki obliczeń zestawiono w tablicy 6.1 i porównano je z wynikami z badań. Na rys. 6.2 przedstawiono wykres teoretycznych naprężeń niszczących σ_{ni} , na którym krzyżykami zaznaczono naprężenia σ_n .wyznaczone doświadczalnie.

Tablica 6.1 Porównanie wyników teoretycznych z wynikami badań doświadczalnych prętów ze stali 18G2A

Table 6.1. Comparison of theoretical and experimental results for 18G2A steel rods

Nr	λ_{ni}	$l_w = i \ 2 \ \lambda_{ni}$	λ_{i}^{\bullet}	$\beta_i^{\bullet} = \left(\frac{\lambda_r}{\lambda_r}\right)^{\zeta}$	$\sigma_{ni} = \frac{\pi^2 E}{2^{\bullet 2} \Omega^{\bullet}}$	Wyniki badań doświadczalnych		$\frac{\sigma_{ni}}{\sigma_n}$
pręta				(λ_i)	$\Lambda_i p_i = P_n = \sigma_n =$		$\sigma_n = P_n / A$	
		[cm]			[MPa]	[daN]	[MPa]	
12	90	29,25	90	1,15280	221,960	735,8	221,739	1,0010
13	80	26,00	82,6460	1,16250	261,210	863,5	260,223	1,0038
14	70	22,75	80,2539	1,16592	276,785	918,0	276,647	1,0005
16	50	16,25	76,0274	1,17208	306,790	1012,8	305,219	1,0051
17	50	9,75	70,0363	1,18149	358,641	1180,0	355,600	1,0085

Rys.6.2. Wykres naprężeń niszczących σ_{ni} dla prętów o średnicy ϕ = 6,5 mm ze stali 18G2A, na podstawie danych w tablicy 6.1 Fig.6.2. Theoretical failure stresses σ_{ni} for specimens of radius ϕ = 6,5 mm made of 18G2A steel, according to table 6.1

6.3. WYNIKI DOŚWIADCZEŃ I OBLICZEŃ PRĘTÓW O PRZEKROJU KWADRATOWYM ZE STALI ST4SX

Według tablicy 4.1 współczynniki wynoszą: $\zeta = 1/6,9919$, $\beta_3^{\bullet} = 1,2118$ oraz $X_r = 3,4798$, wg (2.7) smukłość $\lambda_3^{\bullet} = 107,59273$, smukłość $\lambda_r = 412,14751$, przy czym $\lambda_r^{\zeta} 2,36598$, wg (2.11) smukłość $\lambda_{r4} = 102,54753$.

Ponadto smukłość $\lambda_5 = 89,3603$, według (3.5) smukłość $\lambda_6^{\bullet} = 79,43494$, natomiast wg (1.11) współczynnik $\beta_6^{\bullet} = 1,265514$, a wg (3.13) smukłość $\lambda_{n7} = 24,88984$ oraz wg (3.15) wykładnik X = 7,475819.

Na podstawie (3.18) przy $\lambda_{ni} \leq \lambda_{n4}$ smukłości fikcyjne oblicza się z zalezności:

$$\lambda_{i}^{\bullet} = \left(8,7172 \cdot 10^{14} \cdot \lambda_{ni}^{2}\right)^{0,10714}$$

Wyniki przeprowadzonych badań zestawiono w tablicy 6.2 i porównano je z wynikami z badań doświadczeń. Na rys. 6.3 przedstawiono wykres teoretycznych naprężeń niszczących σ_{ni} oraz krzyżykami zaznaczono naprężenia σ_n z badań doświadczalnych.

Nr	$ \begin{array}{c c} Nr \\ pręta \end{array} \lambda_{ni} l, $	$l_w = i \ 2 \ \lambda_{ni}$	λ_i^{\bullet}	$\boldsymbol{\beta}_{i}^{\bullet} = \left(\frac{\boldsymbol{\lambda}_{r}}{\boldsymbol{\lambda}_{i}^{\bullet}}\right)^{\zeta}$	$\sigma_{ni} = \frac{\pi^2 E}{\lambda_i^{*2} \beta_i^{\bullet}}$	Wyniki badań doświadczalnych		$\frac{\sigma_{ni}}{\sigma}$
pręta						P_n	$\sigma_n = P_n / A$	O _n
		[cm]			[MPa]	[daN]	[MPa]	
41	110	41,280	112,687	1,2038	135,821	572,1	135,384	1,0032
43	90	33,775	104,625	1,2166	155,896	656,8	155,456	1,0028
45	70	26,270	99,140	1,2260	172,291	726,6	171,976	1,0018
47	50	18,764	92,243	1,2387	196,976	828,5	196,095	1,0045
49	30	11,260	82,678	1,2583	241,380	1010,2	239,100	1,0095

Tablica 6.2. Porównanie wyników teoretycznych z wynikami badań doświadczalnych prętów ze stali St4SX Table 6.2. Comparison of theoretical and experimental results for St4SX steel rods

Rys.6.3. Wykres naprężeń niszczących σ_{ni} dla prętów o boku H = 6,5 mm ze stali St4SX, na podstawie danych w tablicy 6.2 Fig.6.3. Theoretical failure stresses σ_{ni} for specimens of square cross-section of H= 6,5 mm made of St4SX steel, according to table 6.2

Wyniki badań potwierdzają, że w zakresie odkształceń plastycznych przy smukłościach $\lambda_{ni} \leq \lambda_H$ doświadczalnie określone, normalne naprężenia niszczące $\sigma_n = P_n / A$ są zgodne z teoretycznymi naprężeniami σ_{ni} , wyznaczonymi na podstawie adekwatnej energii układu materialnego, określonej wzorem (2.35). Na wykresach rys. 6.2 i 6.3 nad odciętymi λ podano wartości współczynników pewności konstrukcji $n = \sigma_{ni} / \sigma_{dop}$ i z nich wynika, że przy stosowaniu np. stali St4SX, konstrukcja nośna obliczana wg obowiązującej wówczas normy PN-76/B-03200 była narażona na

zniszczenie przy osiowych naprężeniach ściskających $\sigma_n = \sigma_{ni}$, mniejszych od naprężeń dopuszczalnych ρ_{dop} . Należy domniemać, że taka mogła być przyczyna zaistniałych wielu awarii stacjonarnych stalowych konstrukcji nośnych, rurociągów energetycznych, kadłubów okrętów itp.

7. WYKRES NAPRĘŻEŃ NISZCZĄCYCH WE WSPÓŁRZĘDNYCH (ε, σ)

Odkształcenie krytyczne występujące w osi ściskanego pręta już przy sile $P \approx P_{ii} / \sqrt{3}$, określają zależności

$$\varepsilon_{kni} = \frac{\sigma_{ni}}{E_{wni}} = \frac{\sigma_{ni}\beta_3^{\bullet 1,5}}{E} \left(\frac{\lambda_3^{\bullet}}{\lambda_i^{\bullet}}\right)^X = \frac{\pi^2}{\lambda_{ni}^2}, \qquad (7.1)$$

a według (3.20) odkształcenie trwałe osi pręta określa wzór

$$\Delta \varepsilon_{_{trwni}} = \frac{\pi^2}{\lambda_{_{ni}}^2} - \frac{\pi^2}{\lambda_{_{Ei}}^2}, \qquad (7.2)$$

w którym λ_{F_i} oznacza smukłość odniesioną do hiperboli Eulera.

Przy pomocy powyższych zależności obliczono naprężenia niszczące i na rys.7.1 przedstawiono ich wykres . Wykres dotyczy prętów o przekroju kołowym pełnym ze stali D50, wynika z wykresu na rys. 4.1 na podstawie tablicy 4.2 . Na rys. 7.1 przedstawiono wykresy z próby ściskania próbki stalowej o małej smukłości, nie wrażliwej na zjawisko wyboczenia (λ <20), który jest bardzo zbliżony do wykresu z próby rozciągania próbki. Analogiczne jak na rys. 2.1, na rys. 7.1 w odpowiednich miejscach wyróżniono punkty 1÷7 oraz oznaczono zakresy odkształceń A, B i C. Wykres rzeczywistych naprężeń niszczących σ_{ni} przebiega przez punkty 0-2-4-7, wykres zaś hiperboli beta – przez punkty 0-2-3-6, a naprężenia wynikające z hiperboli Eulera przedstawia prosta przechodząca przez punkty 0-1-5.Naprężenia ściskające σ , występujące w próbce przy o smukłości λ <20, osiągają wartość granicy plastyczności $R_e = 402$ MPa przy odkształceniu $\varepsilon_{sc Re} = 0,0039134$, skąd wynika adekwatna wartość modułu siecznego

$$E_{sc \text{ Re}} = R_e / \varepsilon_{sc \text{ Re}} = 102725 \text{ MPa}$$
,
= 0.002

w przypadku gdy $\Delta \varepsilon_{trwisc} = 0,002$.

W p. 7 wykresu moduł wyboczeniowo-sieczny osiąga wartość

$$E_{wn7} = \frac{E}{\beta_3^{\bullet 1,5}} \left(\frac{\lambda_6^{\bullet}}{\lambda_3^{\bullet}}\right)^{\chi} = R_e \varepsilon_{kn7} = 22584 \text{ MPa}$$

przy trwałym odkształceniu

$$\Delta \varepsilon_{trwn7} = R_e \left(1 / E_{wn7} - 1 / E \right) = 0,015887 ,$$

które jest prawie 8 razy większe od przyjmowanej dotychczas wartości $\Delta \varepsilon_{trw} = 0,002.$

Rys.7.1. Wykres naprężeń niszczących $\sigma_{\scriptscriptstyle ni}$ dla prętów o przekroju kołowym pełnym ze stali D50

Fig.7.1. Theoretical failure stresses $\sigma_{\it ni}$ for specimens of circular cross-section made of D50 steel

Porównanie powyższych wykresów wskazuje, że przy fizycznym zjawisku wyboczenia występuje zdecydowanie większe wytężenie materiału i dlatego niesłuszne jest utożsamianie granicy plastyczności R_{e} z techniczną granicą sprężystości R_{sr} .

Z powyższej analizy wynika ponadto, że przy zjawisku wyboczenia występuje zdecydowanie większe wytężenie materiału osiowo ściskanego pręta. Obliczony powyżej iloraz modułów wynosi $E_{sc \text{ Re}} / E_{wn7} \approx 4,55$, natomiast iloraz $E / E_{wn7} \approx 9,33$.

Uwzględniając spostrzeżenie, że iloraz odkształceń trwałych $\Delta \varepsilon_{\mu\nu\gamma} / 0,002 \approx 8$ można dojść do wniosku, że fizyczna zdolność materiału do przeniesienia obciążeń zewnętrznych jest znikoma.

8. ROZKŁAD NAPRĘŻEŃ W POŁOWIE DŁUGOŚCI WYBOCZONEGO PRĘTA

W pierwszej części wykorzystano bilans prac, a w drugiej analizowano stan naprężenia, aby sprawdzić zgodność wyników obliczeń.

Spośród badanych doświadczalnie prętów stalowych ze stali St4SX o przekroju kwadratowym wybrano pręt nr 47, aby przeprowadzić przykładowe obliczenia według opracowanych wzorów. Według tablicy 6.2 smukłość $\lambda_{n47} = 50$, a przy $i = H / \sqrt{12}$ otrzymuje się $l_{n47} = 9,382$ cm, gdy smukłość fikcyjna $\lambda_{47}^{\bullet} = 92,243$ i $\beta_{47}^{\bullet} = 1,2387$ oraz H = 0,65 cm.

Maksymalna energia sprężysta wynosi $U_{H} = 0,4889$ J, skąd wg (2.35) energia układu $U_{E47} = (\lambda_{H} / \lambda_{47}^{\bullet})^{3} U_{H} = 1,0348$ J.

Według (2.26) ugięcie niszczące wynosi

$$f_{n47} = i\sqrt{\beta_{47}^{\bullet} - 1/\sqrt{\beta_{47}^{\bullet}}} \sqrt{\lambda_{n47}/\lambda_{47}^{\bullet}} = 0,0806 \,\mathrm{cm} \,.$$

Według (2.29) otrzymuje się kąt $\alpha_{n47} = 1,546^{\circ}$, a zbliżenie końców od zginania wynosi

$$\Delta l_{zgn47} = l_{n47} \cdot 2 \left[1 - \cos^4 \left(\alpha_{n4} / 4 \right) \right] = 0,0017 \text{ cm}$$

Zbliżenie końców pręta od ściskania wynosi

$$\Delta l_{scn47} = \frac{\pi^2 i}{\lambda_{n47} \sqrt{E / E_{wn47}}} = 0,0180 \,\mathrm{cm} \,,$$

przy czym według (3.14) wyrażenie $\sqrt{E/E_{wa47}}$ określone jest następująco

$$\sqrt{E / E_{wn47}} = \left[\beta_{3}^{\bullet 1,5} \left(\lambda_{3}^{\bullet} / \lambda_{47}^{\bullet}\right)^{X}\right]^{1/2} = 2,053$$

Można zatem zapisać bilans prac:

$$P_{n47}(2\Delta l_{zgn47} + \Delta l_{scn47} / 2) = U_{E47}$$

i stąd wynosi siła $P_{n47} = 832,2 \text{ daN}$, a osiowe naprężenie niszczące $\sigma_{n47} = 196,97 \text{ MPa}$. Jak podano w Tablicy 6.2 doświadczalnie wyznaczna siła wynosiła $P_{n47} = 828,5 \text{ daN}$, czyli była mniejsza o 4,5% od obliczonej.

Przy adekwatnym module wyboczeniowo-siecznym

 $E_{wn47} = \sigma_{n47} \cdot \lambda_{n47}^2 / \pi^2 = 49893 \text{ MPa}$

i przy krzywiźnie pręta, w połowie jego długości

$$\frac{1}{\rho_{n47}} = \frac{\pi^2 f_{n47}}{l_{n47}^2} = 0,009035 \ 1/\text{ cm} ,$$

otrzymuje się naprężenia normalne przy zginaniu

$$\sigma_{gn47} = \frac{E_{wn47}J}{W\rho_{n47}} = 146,50 \text{ MPa}.$$

Po stronie wklęsłej wypadkowe naprężenie normalne $\sigma_{m47} = -\sigma_{n47} - \sigma_{gn47} = -343,47$ MPa, po stronie wypukłej $\sigma_{w47} = -\sigma_{n47} + \sigma_{gn47} = -50,47$ MPa. Położenie osi obojętnej określa wzór $Z_{on47} = i^2 / f_{n47} = 0,4369$ cm ,

albo
$$Z_{on47} = \frac{H}{2} \frac{\sigma_{n47}}{\sigma_{gn47}} = 0,4369 \,\mathrm{cm}$$

Powyższe wyniki potwierdzają, że wykres naprężeń i odkształceń przebiega wg linii prostych, a zważywszy występujący jednoimienny rozkład naprężeń możemy obliczyć wartość siły z pola trapezu

$$P_{n47} = 0.5 (\sigma_{w47} + \sigma_{m47}) H^2 = 832.2 \text{ daN},$$

gdy położenie jego środka ciężkości

$$\dot{S}c = \frac{H}{2} - \frac{H}{3} \frac{\sigma_{m47} + 2\sigma_{w47}}{\sigma_{m47} + \sigma_{w47}} = 0,0806 \ cm = f_{n47} \ .$$

Odkształcenie w osi pręta wynosi $\varepsilon_{k47} = \pi^2 / \lambda_{n47}^2 = 0,00395$,

a z (7.2) trwałe odkształcenie

$$\Delta \varepsilon_{trw47} = \varepsilon_{k47} - \sigma_{n47} / E = 0,00301$$

Moduł E_{wn47} występuje w całej objętości pręta i dlatego po stronie wklęsłej zapiszemy

$$\varepsilon_{w47} = \sigma_{w47} / E_{wn47} = \varepsilon_{k47} (Z_{on47} + H / 2) / Z_{on47} = 0,00688,$$

a po stronie wypukłej będzie

$$\varepsilon_{w47} = \sigma_{w47} / E_{wn47} = \varepsilon_{k47} (Z_{on47} - H / 2) / Z_{on47} = 0,00101.$$

Odkształcenia trwałe przebiegają również wg linii prostej, co jest potwierdzeniem teorii płaskich przekrojów trwale ugiętego (odkształconego) pręta.

Iloraz odkształceń

$$\frac{\Delta \varepsilon_{trw47}}{\varepsilon_{k47}} = 0,7628$$

jest stały w odniesieniu od dowolnego punktu materialnego w całej objętości pręta. Na podstawie otrzymanych wyników przedstawiono na rys. 8.1 wykres naprężeń we współrzędnych (Z,σ) oraz wykres odkształceń we współrzędnych (E,ε).

Hoffman i Sachs w swej pracy [8] omówili wyboczenia ściskanych prętów w zakresie odkształceń plastycznych i zaproponowali wprowadzenie modułu zredukowanego E_r do równania równowagi ściskanego pręta

$$\frac{1}{\rho} = \frac{P \cdot f}{E_r \cdot J} \tag{8.1}$$

Stosując symbolikę przyjętą w niniejszej pracy zapisujemy

$$\frac{1}{\rho_n} = \frac{M_{gn}}{E_r \cdot J} = \frac{\sigma_n \cdot A \cdot f_n}{E_r \cdot J} = \frac{\sigma_{gn} \cdot W}{E_r \cdot J}$$
(8.2)

skąd wyznaczamy

$$E_r = \sigma_{gn} \frac{W}{J} \rho_n = \sigma_{gn} \cdot \frac{2}{H} \rho_n .$$
(8.3)

Rys.8.1. Rozkład naprężeń i odkształceń w połowie długości wyboczonego pręta nr 47 o boku H = 0,65 cm i smukłości $\lambda_{n47} = 50$ Fig.8.1. Stresses and relative strains in the middle of the beam-column span of buckled rod

no 47 of *H* = 0,65 cm and slenderness ratio of λ_{n47} = 50

Wprowadzając wartości $\sigma_{gn47} = 146,50$ MPa oraz promień krzywizny $\rho_{n47} = 110,682$ cm z powyższej zależności otrzymuje się:

$$E_r = 146.5 \frac{2}{0.65} 110.68 = 49893 \text{ MPa}.$$

Okazuje się, że $E_r = E_{wn^{47}}$ zatem można porównać oba wzory:

$$\sigma_n \cdot \frac{\lambda_n^2}{\pi^2} = \sigma_{gn} \frac{2}{H} \cdot \rho_n , \qquad (8.4)$$

stąd otrzymuje się

$$\frac{1}{\rho_n} = \frac{\sigma_{gn}}{\sigma_n} \frac{\pi^2}{\lambda_n^2} \frac{2}{H} = \frac{\pi^2}{\lambda_n^2} \frac{1}{Z_{on}} .$$
(8.5)

Zapis powyższy można przedstawić w postaci:

$$\frac{1}{\rho_n} = \frac{\pi^2}{\lambda_n^2} \cdot \frac{f_n}{i^2} \,. \tag{8.6}$$

Wykorzystując wyprowadzony w pracy [2] iloczyn przemieszczeń poprzecznych

$$f_n \cdot Z_{on} = i^2, \tag{8.7}$$

gdzie *i* jest promieniem bezwładności przekroju poprzecznego pręta, wyznaczamy z (8.5) krytyczne odkształcenie

$$\varepsilon_{kn} = \frac{\pi^2}{\lambda_n^2} = \frac{Z_{o_n}}{\rho_n}, \qquad (8.8)$$

co również otrzymano w pracy [2].

Podstawiając obliczone wcześniej wartości $f_{\scriptscriptstyle n47}$ ora
z $Z_{\scriptscriptstyle on47}$ do wzoru (8.7) otrzymuje się:

lewa strona $0,0806 \cdot 0,4369 = 0,035208 \text{ cm}^2$,

prawa strona

$$i^2 = 0.65^2 / 12 = 0.035208 \,\mathrm{cm}^2$$
.

Ze wzoru (8.8)otrzymuje się:

$$\varepsilon_{k_{m}A7} = \pi^2 / 50^2 = 3.95 \cdot 10^{-2}$$

oraz

$$\varepsilon_{kn47} = \frac{Z_{on47}}{\rho_{n47}} = \frac{0,4369}{110,68} = 3,95 \cdot 10^{-3}$$
.

Powyższe rozważania potwierdziły, że w zakresie odkształceń plastycznych występuje również iloczyn przemieszczeń poprzecznych wg (8.7) oraz krytyczne odkształcenie pręta wg (8.8). Zależności te występują również w zakresie odkształceń sprężystych oraz sprężysto-plastycznych, a nawet w zakresie odkształceń nadkrytycznych. Wymienione zależności wskazują jednoznacznie, że krytyczne odkształcenie może wystąpić tylko w ugiętym (wyboczonym) stanie ściskanego pręta, gdy ugięcie f > 0 oraz $Z_0 > 0$, gdyż tylko w takim stanie promień krzywizny jest $\rho < \infty$.

A. Biegus w pracy [9] opisał dokładnie aktualny stan wiedzy dotyczącej projektowania stalowych konstrukcji prętowych wg zaleceń Komitetu Tymczasowego ISO 167 [10] oraz normy Eurokod 3 [11], na podstawie których opracowano aktualną normę PN-90/B-03200 [12]. W części 4 pracy [9], dotyczącej nośności granicznej prętów ściskanych, przyjęto, że sprężyste wyboczenie ściskanego osiowo pierwotnie prostego pręta występuje przy smukłości $\lambda \ge \pi \cdot \sqrt{E/R_H}$, gdzie R_H jest granicą proporcjonalności materiału.

W pracach [1 ÷ 4] udowodniono na podstawie badań laboratoryjnych, że sprężyste wyboczenie, np. pręta stalowego o przekroju kołowym pełnym, występuje przy smukłości $\lambda_r \leq -4.4\lambda_H$ i w takim wyboczonym, statecznym stanie występuje dopiero moduł Younga *E*. Przy smukłościach $\lambda_H \leq \lambda < -4.4\lambda_H$ mamy do czynienia z odkształceniami sprężysto-plastycznymi, w których występujący moduł wyboczeniowy E_w jest mniejszy od modułu *E*. Ściskany pręt stalowy jest niszczony ekstremalną siłą niszczącą $P_n = \pi^2 E_w \cdot A / \lambda^2$ w chwili, gdy wybaczany układ materialny osiąga maksymalną energię sprężystą $U_H = \sqrt{R_H^3 / E\pi \cdot A \cdot i / 2}$. Po odciążeniu pręt nie powraca

do pierwotnej prostoliniowości wykazując trwałe odkształcenia, występujące w całej objętości pręta, powodujące jego trwałe ugięcie w postaci linii sinusoidalnej na całej długości. To wskazuje, że w materiale - podczas obciążenia niszczącego P_n – występowała liczba Poissona v > 0,3. Dzięki przestudiowaniu pracy [9] stwierdzono, żę jest potrzeba wprowadzenia modyfikacji do normy projektowania konstrukcji stalowych.

9. WNIOSKI

Przeprowadzona analiza ściskanych stalowych prostych prętów pryzmatycznych o smukłościach $\lambda < \lambda_H = \lambda_{gr}$ wykazała, że są one niszczone osiowymi ekstremalnymi siłami P_n , po wykorzystaniu przez ściskany układ materialny limitu energii

$$U_{Ei} = \left(\lambda_H / \lambda_{\iota}^{\bullet}\right)^3 \sqrt{R_H^3 / E} \pi A i / 2 ,$$

gdzie λ_{i}^{\bullet} oznacza fikcyjną smukłość związaną z hiperbolą β^{\bullet} według rys. 2.1.

Wykazano, że linia naprężeń niszczących σ_n przebiega poniżej hiperboli Eulera przy $\lambda_H \leq \lambda \leq \lambda_r$ oraz poniżej krzywej Karmana przy smukłości $\lambda_n < \lambda_H$.

Analiza wyników badań doświadczalnych Z. Wasiutyńskiego, który zastosował pręty z podstawkami talerzowymi na końcach, wykazała, że otrzymywane wartości ekstremalnych osiowych naprężeń niszczących $\sigma_{ni} = P_{ni} / A$ były bliskie do wartości obliczonych na podstawie adekwatnych energii U_{Fi} .

Na podstawie własnych doświadczeń na prętach krępych z podstawkami wykonanych ze stali 18G2A i St4SX, stwierdzono, że ściskany pręt ulega zniszczeniu w chwili wykorzystania przez ściskany układ materialny adekwatnego limitu energii U_{r_i} .

Na podstawie wykresów naprężeń niszczących stwierdzono, że współczynniki pewności *n*, mające zabezpieczyć pręt przed zniszczeniem, są mniejsze od współczynników pewności wynikających z polskiej normy, dotyczącej projektowania i obliczeń statycznych konstrukcji stalowych. Jest to prawdopodobnie przyczyna zaistniałych awarii i katastrof konstrukcji nośnych, narażonych na wyboczenie. Z przeprowadzonych badań i rozważań wynika , że o niszczeniu stalowych prętów pryzmatycznych o smukłościach $\lambda_H \leq \lambda \leq \lambda_r$ decyduje maksymalna energia sprężysta układu materialnego

$$U_{H} = \sqrt{R_{H}^{3} / E} \pi \cdot A \cdot i / 2,$$

wynikająca ze struktury stali i kształtu przekroju pręta. Na podstawie wartości energii $U_{_H}$ można uszeregować rodzaje stali (i stopów metali), podobnie jak to zrobiono poniżej w odniesieniu do przekroju kwadratowego pełnego o boku równym 1 cm.

Rodzaj stali lub stopu	$U_{_{H}}\left[\mathrm{J} ight]$
Nowoczesny stop tytanowy przesycony	20,000
Stal 18G2AV ulepszona cieplnie	7,900
Stop aluminium PA34 przesycony	7,860
Stal stosowana do budowy kadłubów okrętów	6,200
Stal 18G2A rekrystalizowana	4,300
Stal St4SX rekrystalizowana	1,780
Stal St3SX walcowana na zimno	1,720

Z przeprowadzonych rozważań wynika, że na główne elementy (dźwigary) konstrukcji nośnych należy stosować rodzaje stali i przekroje prętów gwarantujące najwyższe wartości energii $U_{\rm H}$. Z dokonanej analizy wynika również potrzeba modyfikacji przepisów normowych dotyczących obliczeń statycznych ściskanych prętów w konstrukcjach nośnych, aby zabezpieczyć projektowane konstrukcje przed zniszczeniem.

BIBLIOGRAFIA

- [1] *Odorowicz J.*: Badania doświadczalne nad statecznością prętów pryzmatycznych w zakresie odkształceń sprężysto-plastycznych. Drogi i Mosty nr 3/2004, 53 90
- [2] Odorowicz J.: Badania doświadczalne nad statecznością prętów pryzmatycznych o bardzo dużych smukłościach przy obciążeniu krytycznym. Prace naukowe Politechniki Warszawskiej, Budownictwo, 138, 29 – 73, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2001
- [3] Odorowicz J.: Teoretyczne potwierdzenie występowania bifurkacji równowagi w ściskanych osiowo prętach pryzmatycznych – o bardzo dużych smukłościach – siłą $P^{\bullet} = P_E^{\bullet} / \sqrt{3}$. Theoretical Foundations of Civil Engineering, Polish - Ukrainian Trasaction, 12, I, Warsaw University of Technology Faculty of Civil Engineering, Ed. by W.Szcześniak, Warsaw – Dniepropetrovsk, June 2004
- [4] Odorowicz J.: Analiza stanu krytycznego i nadkrytycznego ściskanych prętów pryzmatycznych o bardzo dużych smukłościach. Drogi i Mosty nr 2/2003, 59 – 110
- [5] *Karman Th.*: Untersuchungen über Knickfestigkeit, Mitteilungen über Forschungsarbeiten auf dem Gebiete das Jngenieurswesens, Berlin, 81/1910
- [6] Wasiutyński Z.: Próby wyboczenia stalowych prętów prostych. WTP, Warszawa 1934
- [7] Ježek K.: N\u00e4herungsberechnung der Tragkraft exzentrisch gedr\u00fcckter Stahlstabe. Der Stahlbau, 8/1935
- [8] Hoffman O., Sachs G.: Wprowadzenie do teorii plastyczności. PWN. Warszawa 1959 (przekład z angielskiego)

- [9] Biegus A.: Nośność graniczna stalowych konstrukcji prętowych. Wydawnictwa Naukowe PWN, Warszawa 1997
- [10] ISO 167/SCI Steel Structures. Material and Design Working Draft, 1988
- [11] Eurocode nr 3 Design of Steel Structures. Cz. 1: General Rules and Rules for Buildings, 1993
- [12] PN-90/B-03200 Konstrukcje stalowe. Obliczenia statyczne i projektowanie

ANEKS. POTWIERDZENIE ŚCISŁOŚCI WZORU (3.13)

Podstawą wyznaczenia linii naprężeń niszczących σ_{ni} – w zakresie odkształceń plastycznych, przedstawionej na rys.2.1. – jest zgodność naprężeń występujących na trzech liniach na tym samym poziomie. Przy granicy plasyczności R_e występują w punktach 7, 6 i 5 jednakowe naprężenia określone zależnościami

$$\frac{\pi^2 E_{wn7}}{\lambda_{n7}^2} = \frac{\pi^2 E}{\lambda_{n7}^2 \cdot K_{n7}} = \frac{\pi^2 E}{\lambda_6^{\bullet 2} \cdot \beta_6^{\bullet}} = \frac{\pi^2 E}{\lambda_5^2}.$$
(10.1)

Możemy zapisać, że

$$\lambda_{n7}^2 \cdot K_{n7} = \lambda_6^{\bullet 2} \cdot \beta_6^{\bullet} , \qquad (10.2)$$

a po wprowadzeniu λ_{u7}^2 wg wzoru (3.13) otrzymamy

$$K_{n7} \cdot \pi^2 \lambda_6^{\bullet} / \beta_6^{\bullet} = \lambda_6^{\bullet 2} \cdot \beta_6^{\bullet} \quad . \tag{10.3}$$

Z wzoru (3.14) wyznaczamy wartość

$$K_{n7} = \frac{E}{E_{wn7}} = \frac{\beta_3^{\bullet 1,5} \cdot \lambda_3^{\bullet X}}{\lambda_6^{\bullet X}} , \qquad (10.4)$$

którą wprowadzamy do (10.3) i po uporządkowaniu składników jest

$$\lambda_{6}^{\bullet} = \left(\pi^{2} \lambda_{3}^{\bullet X} \beta_{3}^{\bullet 1, 5} / \beta_{6}^{\bullet 2}\right)^{1/(X+1)} .$$
(10.5)

Powyższa zależność różni się od zależności (3.18), wyprowadzonej z innych założeń wyjściowych. Na przykładzie np. prętów z rozdziału 5 określono smukłość $\lambda_6^{\bullet} = 44,25048$. Wprowadzając do (10.5) wartości podane w rozdziale 5 otrzymujemy smukłość

$$\lambda_6^{\bullet} = (1,7409 \cdot 10^{15})^{1/9,259744} = 44,25048,$$

identyczną z wynikiem podanym w rozdziale 5 i tym potwierdzamy ścisłość podstawowego wzoru (3.13), na podstawie, którego wyprowadzono wzory (10.3) i (10.5). Wartość $\varepsilon_{kn7} = \pi^2 / \lambda_{n7}^2 = 0,017794$; natomiast $a_{n7} = f_{n7} / l_{n7} = 0,01283$. Okazuje się, że iloraz $\varepsilon_{kn7} / a_{n7} = 1,3874 = \beta_6^{\bullet 2}$. Z niego i z (3.13) jest

$$f_{n7} = \frac{\pi \cdot i}{\beta_6^{\bullet 1.5} \sqrt{\lambda_6^{\bullet}}} \ . \tag{10.6}$$

STABILITY OF STEEL PRISMATIC BEAM COLUMNS IN THE RANGE OF PLASTIC DEFORMATION

Abstract

The paper refers to stability of compressed prismatic steel beam columns in the range of plastic deformation. The rods are characterized by slenderness ratio of $\lambda < \lambda_H$, where $\lambda_H = \pi \sqrt{R_H}$, R_H

is proportional limit of the steel. The original experimental tests as well as tests carried out by Z. Wasiutyński is described in the paper. The analysis of experimental results is made with respect to the proposed by author formulas determining both the static and geometric parameters of beam columns as well as the energy and the work of external forces of the critical state of axially compressed bar. The research is complemented by calculation of safety factors, which due to proposed by author analysis is lower than that proposed by Polish standard PN-90/B-03200, on static analysis and design of steel structures.

It was stated experimentally that with decreasing of the slenderness ratio of compressed bars the work of compression (L_{sc}) increases quickly whereas the work of bending (L_{zg}) decreases. It is stated that the axis of failure forces (P_n) remain within core of a cross-section, what indicate that very short bars, which can be loaded by compressed forces of the value near yield point (R_e) , do not buckle.

Wartość $\varepsilon_{kn7} = \pi^2 / \lambda_{n7}^2 = 0,017794$; natomiast $a_{n7} = f_{n7} / l_{n7} = 0,01283$. Okazuje się, że iloraz $\varepsilon_{kn7} / a_{n7} = 1,3874 = \beta_6^{\bullet 2}$. Z niego i z (3.13) jest

$$f_{n7} = \frac{\pi \cdot i}{\beta_6^{\bullet 1.5} \sqrt{\lambda_6^{\bullet}}} \ . \tag{10.6}$$

STABILITY OF STEEL PRISMATIC BEAM COLUMNS IN THE RANGE OF PLASTIC DEFORMATION

Abstract

The paper refers to stability of compressed prismatic steel beam columns in the range of plastic deformation. The rods are characterized by slenderness ratio of $\lambda < \lambda_H$, where $\lambda_H = \pi \sqrt{R_H}$, R_H

is proportional limit of the steel. The original experimental tests as well as tests carried out by Z. Wasiutyński is described in the paper. The analysis of experimental results is made with respect to the proposed by author formulas determining both the static and geometric parameters of beam columns as well as the energy and the work of external forces of the critical state of axially compressed bar. The research is complemented by calculation of safety factors, which due to proposed by author analysis is lower than that proposed by Polish standard PN-90/B-03200, on static analysis and design of steel structures.

It was stated experimentally that with decreasing of the slenderness ratio of compressed bars the work of compression (L_{sc}) increases quickly whereas the work of bending (L_{zg}) decreases. It is stated that the axis of failure forces (P_n) remain within core of a cross-section, what indicate that very short bars, which can be loaded by compressed forces of the value near yield point (R_e) , do not buckle.